亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Structural causal models (SCMs) are widely used in various disciplines to represent causal relationships among variables in complex systems. Unfortunately, the underlying causal structure is often unknown, and estimating it from data remains a challenging task. In many situations, however, the end goal is to localize the changes (shifts) in the causal mechanisms between related datasets instead of learning the full causal structure of the individual datasets. Some applications include root cause analysis, analyzing gene regulatory network structure changes between healthy and cancerous individuals, or explaining distribution shifts. This paper focuses on identifying the causal mechanism shifts in two or more related datasets over the same set of variables -- without estimating the entire DAG structure of each SCM. Prior work under this setting assumed linear models with Gaussian noises; instead, in this work we assume that each SCM belongs to the more general class of nonlinear additive noise models (ANMs). A key technical contribution of this work is to show that the Jacobian of the score function for the mixture distribution allows for the identification of shifts under general non-parametric functional mechanisms. Once the shifted variables are identified, we leverage recent work to estimate the structural differences, if any, for the shifted variables. Experiments on synthetic and real-world data are provided to showcase the applicability of this approach. Code implementing the proposed method is open-source and publicly available at //github.com/kevinsbello/iSCAN.

相關內容

Despite achieving promising fairness-error trade-offs, in-processing mitigation techniques for group fairness cannot be employed in numerous practical applications with limited computation resources or no access to the training pipeline of the prediction model. In these situations, post-processing is a viable alternative. However, current methods are tailored to specific problem settings and fairness definitions and hence, are not as broadly applicable as in-processing. In this work, we propose a framework that turns any regularized in-processing method into a post-processing approach. This procedure prescribes a way to obtain post-processing techniques for a much broader range of problem settings than the prior post-processing literature. We show theoretically and through extensive experiments that our framework preserves the good fairness-error trade-offs achieved with in-processing and can improve over the effectiveness of prior post-processing methods. Finally, we demonstrate several advantages of a modular mitigation strategy that disentangles the training of the prediction model from the fairness mitigation, including better performance on tasks with partial group labels.

Recently, large language models (LLMs) have achieved tremendous breakthroughs in the field of language processing, yet their mechanisms in processing multiple languages remain agnostic. Therefore, in this work we study the multilingual activation patterns of LLMs. By transforming the original Large Language Models (LLMs) into a Mixture of Experts (MoE) architecture, we analyze the expert activation patterns when processing various languages and demonstrate the connections of these activation patterns at the level of language families. We discover the existence of non-language-specific neurons as well as language-specific activation neurons. Further exploration even showcases that merely leveraging high-frequency activation neurons can accelerate inference while maintaining comparable performance. These findings shed light on the LLMs' multilingual processing mechanism, and are of significant importance in guiding the multilingual training and model pruning of LLMs.

Recent advances in instruction-tuned Large Vision-Language Models (LVLMs) have imbued the models with the ability to generate high-level, image-grounded explanations with ease. While such capability is largely attributed to the rich world knowledge contained within the Large Language Models (LLMs), our work reveals their shortcomings in fine-grained visual categorization (FGVC) across six different benchmark settings. Most recent state-of-the-art LVLMs like LLaVa-1.5, InstructBLIP and GPT-4V not only severely deteriorate in terms of classification performance, e.g., average drop of 65.58 in EM for Stanford Dogs for LLaVA-1.5, but also struggle to generate an accurate explanation with detailed attributes based on the concept that appears within an input image despite their capability to generate holistic image-level descriptions. In-depth analyses show that instruction-tuned LVLMs exhibit modality gap, showing discrepancy when given textual and visual inputs that correspond to the same concept, preventing the image modality from leveraging the rich parametric knowledge within the LLMs. In an effort to further the community's endeavor in this direction, we propose a multiple granularity attribute-centric evaluation benchmark, Finer, which aims to establish a ground to evaluate LVLMs' fine-grained visual comprehension ability and provide significantly improved explainability.

Transformer-based language models for automatic code completion have shown great promise so far, yet the evaluation of these models rarely uses real data. This study provides both quantitative and qualitative assessments of three public code language models when completing real-world code. We first developed an open-source IDE extension, Code4Me, for the online evaluation of the models. We collected real auto-completion usage data for over a year from more than 1200 users, resulting in over 600K valid completions. These models were then evaluated using six standard metrics across twelve programming languages. Next, we conducted a qualitative study of 1690 real-world completion requests to identify the reasons behind the poor model performance. A comparative analysis of the models' performance in online and offline settings was also performed, using benchmark synthetic datasets and two masking strategies. Our findings suggest that while developers utilize code completion across various languages, the best results are achieved for mainstream languages such as Python and Java. InCoder outperformed the other models across all programming languages, highlighting the significance of training data and objectives. Our study also revealed that offline evaluations do not accurately reflect real-world scenarios. Upon qualitative analysis of the model's predictions, we found that 66.3% of failures were due to the models' limitations, 24.4% occurred due to inappropriate model usage in a development context, and 9.3% were valid requests that developers overwrote. Given these findings, we propose several strategies to overcome the current limitations. These include refining training objectives, improving resilience to typographical errors, adopting hybrid approaches, and enhancing implementations and usability.

Large language models (LLMs) are typically aligned to be harmless to humans. Unfortunately, recent work has shown that such models are susceptible to automated jailbreak attacks that induce them to generate harmful content. More recent LLMs often incorporate an additional layer of defense, a Guard Model, which is a second LLM that is designed to check and moderate the output response of the primary LLM. Our key contribution is to show a novel attack strategy, PRP, that is successful against several open-source (e.g., Llama 2) and closed-source (e.g., GPT 3.5) implementations of Guard Models. PRP leverages a two step prefix-based attack that operates by (a) constructing a universal adversarial prefix for the Guard Model, and (b) propagating this prefix to the response. We find that this procedure is effective across multiple threat models, including ones in which the adversary has no access to the Guard Model at all. Our work suggests that further advances are required on defenses and Guard Models before they can be considered effective.

Vehicular networks use Decentralized Congestion Control (DCC) mechanisms to operate effectively, but this mechanism may introduce queuing delays. Freshness of Cooperative Awareness Messages (CAMs) is critical for their usefulness. In this letter we explore how the presence of other types of traffic additional to CAMs, even with lower priorities, has an impact on the freshness of CAM messages due to DCC queuing. Finally, we propose Generate-on-Time (GoT), which is a simple mechanism that reduces DCC queuing delays for CAM messages without introducing any downside in other performance metrics.

Large language models (LLM) have recently attracted surging interest due to their outstanding capabilities across various domains. However, enabling efficient LLM inference is challenging due to its autoregressive decoding that generates tokens only one at a time. Although research works apply pruning or quantization to speed up LLM inference, they typically require fine-tuning the LLM, incurring significant time and economic costs. Meanwhile, speculative decoding has been proposed to use small speculative models (SSMs) to accelerate the inference of LLM. However, the low acceptance rate of SSM and the high verification cost of LLM prohibit further performance improvement of inference. In this paper, we propose Minions, an LLM inference system that accelerates LLM inference with a collective and adaptive speculative generation. Specifically, Minions proposes a majority-voted mechanism to leverage multiple SSMs to jointly speculate the outputs of LLM, which improves the inference performance without introducing prohibitive computation costs for LLM. To better trade off the number of tokens speculated from SSM and the verification cost of LLM, Minions proposes an adaptive mechanism to dynamically determine the optimal speculation length of SSM, which can achieve better inference performance across different models, datasets, and hyper-parameters. In addition, Minions decouples the SSM decoding and LLM verification efficiently and adopts a pipelined execution mechanism to further improve the inference performance of LLM. By comparing with the state-of-the-art LLM inference systems, we demonstrate that Minions can achieve higher inference throughput and lower inference time.

Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.

北京阿比特科技有限公司