亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As communication protocols evolve, datacenter network utilization increases. As a result, congestion is more frequent, causing higher latency and packet loss. Combined with the increasing complexity of workloads, manual design of congestion control (CC) algorithms becomes extremely difficult. This calls for the development of AI approaches to replace the human effort. Unfortunately, it is currently not possible to deploy AI models on network devices due to their limited computational capabilities. Here, we offer a solution to this problem by building a computationally-light solution based on a recent reinforcement learning CC algorithm [arXiv:2207.02295]. We reduce the inference time of RL-CC by x500 by distilling its complex neural network into decision trees. This transformation enables real-time inference within the $\mu$-sec decision-time requirement, with a negligible effect on quality. We deploy the transformed policy on NVIDIA NICs in a live cluster. Compared to popular CC algorithms used in production, RL-CC is the only method that performs well on all benchmarks tested over a large range of number of flows. It balances multiple metrics simultaneously: bandwidth, latency, and packet drops. These results suggest that data-driven methods for CC are feasible, challenging the prior belief that handcrafted heuristics are necessary to achieve optimal performance.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡(luo)會(hui)議。 Publisher:IFIP。 SIT:

Modern neural network architectures still struggle to learn algorithmic procedures that require to systematically apply compositional rules to solve out-of-distribution problem instances. In this work, we focus on formula simplification problems, a class of synthetic benchmarks used to study the systematic generalization capabilities of neural architectures. We propose a modular architecture designed to learn a general procedure for solving nested mathematical formulas by only relying on a minimal set of training examples. Inspired by rewriting systems, a classic framework in symbolic artificial intelligence, we include in the architecture three specialized and interacting modules: the Selector, trained to identify solvable sub-expressions; the Solver, mapping sub-expressions to their values; and the Combiner, replacing sub-expressions in the original formula with the solution provided by the Solver. We benchmark our system against the Neural Data Router, a recent model specialized for systematic generalization, and a state-of-the-art large language model (GPT-4) probed with advanced prompting strategies. We demonstrate that our approach achieves a higher degree of out-of-distribution generalization compared to these alternative approaches on three different types of formula simplification problems, and we discuss its limitations by analyzing its failures.

We propose a framework for the analysis of transmission channels in a large class of dynamic models. To this end, we formulate our approach both using graph theory and potential outcomes, which we show to be equivalent. Our method, labelled Transmission Channel Analysis (TCA), allows for the decomposition of total effects captured by impulse response functions into the effects flowing along transmission channels, thereby providing a quantitative assessment of the strength of various transmission channels. We establish that this requires no additional identification assumptions beyond the identification of the structural shock whose effects the researcher wants to decompose. Additionally, we prove that impulse response functions are sufficient statistics for the computation of transmission effects. We demonstrate the empirical relevance of TCA for policy evaluation by decomposing the effects of policy shocks arising from a variety of popular macroeconomic models.

Recent advances in the field of deep learning and impressive performance of deep neural networks (DNNs) for perception have resulted in an increased demand for their use in automated driving (AD) systems. The safety of such systems is of utmost importance and thus requires to consider the unique properties of DNNs. In order to achieve safety of AD systems with DNN-based perception components in a systematic and comprehensive approach, so-called safety concerns have been introduced as a suitable structuring element. On the one hand, the concept of safety concerns is -- by design -- well aligned to existing standards relevant for safety of AD systems such as ISO 21448 (SOTIF). On the other hand, it has already inspired several academic publications and upcoming standards on AI safety such as ISO PAS 8800. While the concept of safety concerns has been previously introduced, this paper extends and refines it, leveraging feedback from various domain and safety experts in the field. In particular, this paper introduces an additional categorization for a better understanding as well as enabling cross-functional teams to jointly address the concerns.

Big data, encompassing extensive datasets, has seen rapid expansion, notably with a considerable portion being textual data, including strings and texts. Simple compression methods and standard data structures prove inadequate for processing these datasets, as they require decompression for usage or consume extensive memory resources. Consequently, this motivation has led to the development of compressed data structures that support various queries for a given string, typically operating in polylogarithmic time and utilizing compressed space proportional to the string's length. Notably, the suffix array (SA) query is a critical component in implementing a suffix tree, which has a broad spectrum of applications. A line of research has been conducted on (especially, static) compressed data structures that support the SA query. A common finding from most of the studies is the suboptimal space efficiency of existing compressed data structures. Kociumaka, Navarro, and Prezza [IEEE Trans. Inf. Theory 2023] have made a significant contribution by introducing an asymptotically minimal space requirement, $O\left(\delta \log\frac{n\log\sigma}{\delta\log n} \log n \right)$ bits ($\delta$-optimal space), sufficient to represent any string of length $n$, with an alphabet size of $\sigma$, and substring complexity $\delta$, serving as a measure of repetitiveness. More recently, Kempa and Kociumaka [FOCS 2023] presented $\delta$-SA, a compressed data structure supporting SA queries in $\delta$-optimal space. However, the data structures introduced thus far are static. We present the first dynamic compressed data structure that supports the SA query and update in polylogarithmic time and $\delta$-optimal space. More precisely, it can answer SA queries and perform updates in $O(\log^7 n)$ and expected $O(\log^8 n)$ time, respectively, using an expected $\delta$-optimal space.

Pre-trained large language models (LLMs) can now be easily adapted for specific business purposes using custom prompts or fine tuning. These customizations are often iteratively re-engineered to improve some aspect of performance, but after each change businesses want to ensure that there has been no negative impact on the system's behavior around such critical issues as bias. Prior methods of benchmarking bias use techniques such as word masking and multiple choice questions to assess bias at scale, but these do not capture all of the nuanced types of bias that can occur in free response answers, the types of answers typically generated by LLM systems. In this paper, we identify several kinds of nuanced bias in free text that cannot be similarly identified by multiple choice tests. We describe these as: confidence bias, implied bias, inclusion bias and erasure bias. We present a semi-automated pipeline for detecting these types of bias by first eliminating answers that can be automatically classified as unbiased and then co-evaluating name reversed pairs using crowd workers. We believe that the nuanced classifications our method generates can be used to give better feedback to LLMs, especially as LLM reasoning capabilities become more advanced.

Hallucination is often regarded as a major impediment for using large language models (LLMs), especially for knowledge-intensive tasks. Even when the training corpus consists solely of true statements, language models still generate hallucinations in the form of amalgamations of multiple facts. We coin this phenomenon as ``knowledge overshadowing'': when we query knowledge from a language model with multiple conditions, some conditions overshadow others, leading to hallucinated outputs. This phenomenon partially stems from training data imbalance, which we verify on both pretrained models and fine-tuned models, over a wide range of LM model families and sizes.From a theoretical point of view, knowledge overshadowing can be interpreted as over-generalization of the dominant conditions (patterns). We show that the hallucination rate grows with both the imbalance ratio (between the popular and unpopular condition) and the length of dominant condition description, consistent with our derived generalization bound. Finally, we propose to utilize overshadowing conditions as a signal to catch hallucination before it is produced, along with a training-free self-contrastive decoding method to alleviate hallucination during inference. Our proposed approach showcases up to 82% F1 for hallucination anticipation and 11.2% to 39.4% hallucination control, with different models and datasets.

Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

The notion of "in-domain data" in NLP is often over-simplistic and vague, as textual data varies in many nuanced linguistic aspects such as topic, style or level of formality. In addition, domain labels are many times unavailable, making it challenging to build domain-specific systems. We show that massive pre-trained language models implicitly learn sentence representations that cluster by domains without supervision -- suggesting a simple data-driven definition of domains in textual data. We harness this property and propose domain data selection methods based on such models, which require only a small set of in-domain monolingual data. We evaluate our data selection methods for neural machine translation across five diverse domains, where they outperform an established approach as measured by both BLEU and by precision and recall of sentence selection with respect to an oracle.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司