亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Analyses for biodiversity monitoring based on passive acoustic monitoring (PAM) recordings is time-consuming and challenged by the presence of background noise in recordings. Existing models for sound event detection (SED) worked only on certain avian species and the development of further models required labeled data. The developed framework automatically extracted labeled data from available platforms for selected avian species. The labeled data were embedded into recordings, including environmental sounds and noise, and were used to train convolutional recurrent neural network (CRNN) models. The models were evaluated on unprocessed real world data recorded in urban KwaZulu-Natal habitats. The Adapted SED-CRNN model reached a F1 score of 0.73, demonstrating its efficiency under noisy, real-world conditions. The proposed approach to automatically extract labeled data for chosen avian species enables an easy adaption of PAM to other species and habitats for future conservation projects.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Extensibility · Performer · Notability · Integration ·
2024 年 7 月 30 日

Point tracking is a challenging task in computer vision, aiming to establish point-wise correspondence across long video sequences. Recent advancements have primarily focused on temporal modeling techniques to improve local feature similarity, often overlooking the valuable semantic consistency inherent in tracked points. In this paper, we introduce a novel approach leveraging language embeddings to enhance the coherence of frame-wise visual features related to the same object. Our proposed method, termed autogenic language embedding for visual feature enhancement, strengthens point correspondence in long-term sequences. Unlike existing visual-language schemes, our approach learns text embeddings from visual features through a dedicated mapping network, enabling seamless adaptation to various tracking tasks without explicit text annotations. Additionally, we introduce a consistency decoder that efficiently integrates text tokens into visual features with minimal computational overhead. Through enhanced visual consistency, our approach significantly improves tracking trajectories in lengthy videos with substantial appearance variations. Extensive experiments on widely-used tracking benchmarks demonstrate the superior performance of our method, showcasing notable enhancements compared to trackers relying solely on visual cues.

Time-resolved three-dimensional flow MRI (4D flow MRI) provides a unique non-invasive solution to visualize and quantify hemodynamics in blood vessels such as the aortic arch. However, most current analysis methods for arterial 4D flow MRI use static artery walls because of the difficulty in obtaining a full cycle segmentation. To overcome this limitation, we propose a neural fields-based method that directly estimates continuous periodic wall deformations throughout the cardiac cycle. For a 3D + time imaging dataset, we optimize an implicit neural representation (INR) that represents a time-dependent velocity vector field (VVF). An ODE solver is used to integrate the VVF into a deformation vector field (DVF), that can deform images, segmentation masks, or meshes over time, thereby visualizing and quantifying local wall motion patterns. To properly reflect the periodic nature of 3D + time cardiovascular data, we impose periodicity in two ways. First, by periodically encoding the time input to the INR, and hence VVF. Second, by regularizing the DVF. We demonstrate the effectiveness of this approach on synthetic data with different periodic patterns, ECG-gated CT, and 4D flow MRI data. The obtained method could be used to improve 4D flow MRI analysis.

Online Class-Incremental continual Learning (OCIL) addresses the challenge of continuously learning from a single-channel data stream, adapting to new tasks while mitigating catastrophic forgetting. Recently, Mutual Information (MI)-based methods have shown promising performance in OCIL. However, existing MI-based methods treat various knowledge components in isolation, ignoring the knowledge confusion across tasks. This narrow focus on simple MI knowledge alignment may lead to old tasks being easily forgotten with the introduction of new tasks, risking the loss of common parts between past and present knowledge.To address this, we analyze the MI relationships from the perspectives of diversity, representativeness, and separability, and propose an Enhanced Mutual Information (EMI) method based on knwoledge decoupling. EMI consists of Diversity Mutual Information (DMI), Representativeness Mutual Information (RMI) and Separability Mutual Information (SMI). DMI diversifies intra-class sample features by considering the similarity relationships among inter-class sample features to enable the network to learn more general knowledge. RMI summarizes representative features for each category and aligns sample features with these representative features, making the intra-class sample distribution more compact. SMI establishes MI relationships for inter-class representative features, enhancing the stability of representative features while increasing the distinction between inter-class representative features, thus creating clear boundaries between class. Extensive experimental results on widely used benchmark datasets demonstrate the superior performance of EMI over state-of-the-art baseline methods.

We propose a novel approach for the automatic equalization of individual musical instrument tracks. Our method begins by identifying the instrument present within a source recording in order to choose its corresponding ideal spectrum as a target. Next, the spectral difference between the recording and the target is calculated, and accordingly, an equalizer matching model is used to predict settings for a parametric equalizer. To this end, we build upon a differentiable parametric equalizer matching neural network, demonstrating improvements relative to previously established state-of-the-art. Unlike past approaches, we show how our system naturally allows real-world audio data to be leveraged during the training of our matching model, effectively generating suitably produced training targets in an automated manner mirroring conditions at inference time. Consequently, we illustrate how fine-tuning our matching model on such examples considerably improves parametric equalizer matching performance in real-world scenarios, decreasing mean absolute error by 24% relative to methods relying solely on random parameter sampling techniques as a self-supervised learning strategy. We perform listening tests, and demonstrate that our proposed automatic equalization solution subjectively enhances the tonal characteristics for recordings of common instrument types.

Integrating coded caching (CC) into multiple-input multiple-output (MIMO) communications may significantly enhance the achievable degrees of freedom (DoF) of the wireless networks. In this paper, we consider a cache-aided MIMO configuration with a CC gain $t$, where a server with $L$ Tx antennas communicates with $K$ users, each with $G$ Rx antennas. In the proposed content-aware MIMO strategy, we carefully adjust the number of users $\Omega$ and the number of parallel streams decoded by each user $\beta$ served in each transmission to maximize the DoF. As a result, we achieve a DoF of ${\max_{\beta, \Omega }}{\Omega \beta}$, where ${\beta \le \mathrm{min}\big(G,\frac{L \binom{\Omega-1}{t}}{1 + (\Omega - t-1)\binom{\Omega-1}{t}}\big)}$. To prove the achievability of the proposed DoF bound, we provide a novel transmission strategy based on the simultaneous unicasting of multiple data streams. In this strategy, the missing data packets are scheduled such that the number of parallel streams per transmission is maximized while the decodability of all useful terms by each target user is guaranteed. Numerical simulations validate the findings, confirming the enhanced DoF and improved performance of the proposed design.

Fair biometric algorithms have similar verification performance across different demographic groups given a single decision threshold. Unfortunately, for state-of-the-art face recognition networks, score distributions differ between demographics. Contrary to work that tries to align those distributions by extra training or fine-tuning, we solely focus on score post-processing methods. As proved, well-known sample-centered score normalization techniques, Z-norm and T-norm, do not improve fairness for high-security operating points. Thus, we extend the standard Z/T-norm to integrate demographic information in normalization. Additionally, we investigate several possibilities to incorporate cohort similarities for both genuine and impostor pairs per demographic to improve fairness across different operating points. We run experiments on two datasets with different demographics (gender and ethnicity) and show that our techniques generally improve the overall fairness of five state-of-the-art pre-trained face recognition networks, without downgrading verification performance. We also indicate that an equal contribution of False Match Rate (FMR) and False Non-Match Rate (FNMR) in fairness evaluation is required for the highest gains. Code and protocols are available.

We present filters with rational exponents in order to provide a continuum of filter behavior not classically achievable. We discuss their stability, the flexibility they afford, and various representations useful for analysis, design and implementations. We do this for a generalization of second order filters which we refer to as rational-exponent Generalized Auditory Filters/Filterbanks (GAFs) that are useful for a diverse array of applications. We present equivalent representations for rational-order GAFs in the time and frequency domains: transfer functions, impulse responses, and integral expressions - the last of which allows for efficient real-time processing without preprocessing requirements. Rational-exponent filters enable filter characteristics to be on a continuum rather than limiting them to discrete values thereby resulting in greater flexibility in the behavior of these filters. In the case of GAFs, this allows for having arbitrary continuous rather than discrete values for filter characteristics such as (1) the ratio of 3dB quality factor to maximum group delay - particularly important for filterbanks which have simultaneous requirements on frequency selectivity and synchronization; and (2) the ratio of 3dB to 15dB quality factors that dictates the shape of the frequency response magnitude.

Significant improvement has been achieved in automated audio captioning (AAC) with recent models. However, these models have become increasingly large as their performance is enhanced. In this work, we propose a knowledge distillation (KD) framework for AAC. Our analysis shows that in the encoder-decoder based AAC models, it is more effective to distill knowledge into the encoder as compared with the decoder. To this end, we incorporate encoder-level KD loss into training, in addition to the standard supervised loss and sequence-level KD loss. We investigate two encoder-level KD methods, based on mean squared error (MSE) loss and contrastive loss, respectively. Experimental results demonstrate that contrastive KD is more robust than MSE KD, exhibiting superior performance in data-scarce situations. By leveraging audio-only data into training in the KD framework, our student model achieves competitive performance, with an inference speed that is 19 times faster\footnote{An online demo is available at \url{//huggingface.co/spaces/wsntxxn/efficient_audio_captioning}}.

Automatic speech recognition (ASR) models trained on large amounts of audio data are now widely used to convert speech to written text in a variety of applications from video captioning to automated assistants used in healthcare and other domains. As such, it is important that ASR models and their use is fair and equitable. Prior work examining the performance of commercial ASR systems on the Corpus of Regional African American Language (CORAAL) demonstrated significantly worse ASR performance on African American English (AAE). The current study seeks to understand the factors underlying this disparity by examining the performance of the current state-of-the-art neural network based ASR system (Whisper, OpenAI) on the CORAAL dataset. Two key findings have been identified as a result of the current study. The first confirms prior findings of significant dialectal variation even across neighboring communities, and worse ASR performance on AAE that can be improved to some extent with fine-tuning of ASR models. The second is a novel finding not discussed in prior work on CORAAL: differences in audio recording practices within the dataset have a significant impact on ASR accuracy resulting in a ``confounding by provenance'' effect in which both language use and recording quality differ by study location. These findings highlight the need for further systematic investigation to disentangle the effects of recording quality and inherent linguistic diversity when examining the fairness and bias present in neural ASR models, as any bias in ASR accuracy may have negative downstream effects on disparities in various domains of life in which ASR technology is used.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司