By exploiting the connection between scattered $\mathbb{F}_q$-subspaces of $\mathbb{F}_{q^m}^3$ and minimal non degenerate $3$-dimensional rank metric codes of $\mathbb{F}_{q^m}^{n}$, $n \geq m+2$, described in [2], we will exhibit a new class of codes with parameters $[m+2,3,m-2]_{q^m/q}$ for infinite values of $q$ and $m \geq 5$ odd. Moreover, by studying the geometric structures of these scattered subspaces, we determine the rank weight distribution of the associated codes.
In this article, we propose a new classification of $\Sigma^0_2$ formulas under the realizability interpretation of many-one reducibility (i.e., Levin reducibility). For example, ${\sf Fin}$, the decision of being eventually zero for sequences, is many-one/Levin complete among $\Sigma^0_2$ formulas of the form $\exists n\forall m\geq n.\varphi(m,x)$, where $\varphi$ is decidable. The decision of boundedness for sequences ${\sf BddSeq}$ and posets ${\sf PO}_{\sf top}$ are many-one/Levin complete among $\Sigma^0_2$ formulas of the form $\exists n\forall m\geq n\forall k.\varphi(m,k,x)$, where $\varphi$ is decidable. However, unlike the classical many-one reducibility, none of the above is $\Sigma^0_2$-complete. The decision of non-density of linear order ${\sf NonDense}$ is truly $\Sigma^0_2$-complete.
We study differentially private (DP) estimation of a rank-$r$ matrix $M \in \RR^{d_1\times d_2}$ under the trace regression model with Gaussian measurement matrices. Theoretically, the sensitivity of non-private spectral initialization is precisely characterized, and the differential-privacy-constrained minimax lower bound for estimating $M$ under the Schatten-$q$ norm is established. Methodologically, the paper introduces a computationally efficient algorithm for DP-initialization with a sample size of $n \geq \wt O (r^2 (d_1\vee d_2))$. Under certain regularity conditions, the DP-initialization falls within a local ball surrounding $M$. We also propose a differentially private algorithm for estimating $M$ based on Riemannian optimization (DP-RGrad), which achieves a near-optimal convergence rate with the DP-initialization and sample size of $n \geq \wt O(r (d_1 + d_2))$. Finally, the paper discusses the non-trivial gap between the minimax lower bound and the upper bound of low-rank matrix estimation under the trace regression model. It is shown that the estimator given by DP-RGrad attains the optimal convergence rate in a weaker notion of differential privacy. Our powerful technique for analyzing the sensitivity of initialization requires no eigengap condition between $r$ non-zero singular values.
We consider a class of symmetry hypothesis testing problems including testing isotropy on $\mathbb{R}^d$ and testing rotational symmetry on the hypersphere $\mathcal{S}^{d-1}$. For this class, we study the null and non-null behaviors of Sobolev tests, with emphasis on their consistency rates. Our main results show that: (i) Sobolev tests exhibit a detection threshold (see Bhattacharya, 2019, 2020) that does not only depend on the coefficients defining these tests; and (ii) tests with non-zero coefficients at odd (respectively, even) ranks only are blind to alternatives with angular functions whose $k$th-order derivatives at zero vanish for any $k$ odd (even). Our non-standard asymptotic results are illustrated with Monte Carlo exercises. A case study in astronomy applies the testing toolbox to evaluate the symmetry of orbits of long- and short-period comets.
We study the complexity of constructing an optimal parsing $\varphi$ of a string ${\bf s} = s_1 \dots s_n$ under the constraint that given a position $p$ in the original text, and the LZ76-like (Lempel Ziv 76) encoding of $T$ based on $\varphi$, it is possible to identify/decompress the character $s_p$ by performing at most $c$ accesses to the LZ encoding, for a given integer $c.$ We refer to such a parsing $\varphi$ as a $c$-bounded access LZ parsing or $c$-BLZ parsing of ${\bf s}.$ We show that for any constant $c$ the problem of computing the optimal $c$-BLZ parsing of a string, i.e., the one with the minimum number of phrases, is NP-hard and also APX hard, i.e., no PTAS can exist under the standard complexity assumption $P \neq NP.$ We also study the ratio between the sizes of an optimal $c$-BLZ parsing of a string ${\bf s}$ and an optimal LZ76 parsing of ${\bf s}$ (which can be greedily computed in polynomial time).
In 2017, Aharoni proposed the following generalization of the Caccetta-H\"{a}ggkvist conjecture: if $G$ is a simple $n$-vertex edge-colored graph with $n$ color classes of size at least $r$, then $G$ contains a rainbow cycle of length at most $\lceil n/r \rceil$. In this paper, we prove that, for fixed $r$, Aharoni's conjecture holds up to an additive constant. Specifically, we show that for each fixed $r \geq 1$, there exists a constant $c_r$ such that if $G$ is a simple $n$-vertex edge-colored graph with $n$ color classes of size at least $r$, then $G$ contains a rainbow cycle of length at most $n/r + c_r$.
Given a hypergraph $\mathcal{H}$, the dual hypergraph of $\mathcal{H}$ is the hypergraph of all minimal transversals of $\mathcal{H}$. The dual hypergraph is always Sperner, that is, no hyperedge contains another. A special case of Sperner hypergraphs are the conformal Sperner hypergraphs, which correspond to the families of maximal cliques of graphs. All these notions play an important role in many fields of mathematics and computer science, including combinatorics, algebra, database theory, etc. In this paper we study conformality of dual hypergraphs and prove several results related to the problem of recognizing this property. In particular, we show that the problem is in co-NP and can be solved in polynomial time for hypergraphs of bounded dimension. In the special case of dimension $3$, we reduce the problem to $2$-Satisfiability. Our approach has an implication in algorithmic graph theory: we obtain a polynomial-time algorithm for recognizing graphs in which all minimal transversals of maximal cliques have size at most $k$, for any fixed $k$.
A graph $G$ is well-covered if all maximal independent sets are of the same cardinality. Let $w:V(G) \longrightarrow\mathbb{R}$ be a weight function. Then $G$ is $w$-well-covered if all maximal independent sets are of the same weight. An edge $xy \in E(G)$ is relating if there exists an independent set $S$ such that both $S \cup \{x\}$ and $S \cup \{y\}$ are maximal independent sets in the graph. If $xy$ is relating then $w(x)=w(y)$ for every weight function $w$ such that $G$ is $w$-well-covered. Relating edges play an important role in investigating $w$-well-covered graphs. The decision problem whether an edge in a graph is relating is NP-complete. We prove that the problem remains NP-complete when the input is restricted to graphs without cycles of length $6$. This is an unexpected result because recognizing relating edges is known to be polynomially solvable for graphs without cycles of lengths $4$ and $6$, graphs without cycles of lengths $5$ and $6$, and graphs without cycles of lengths $6$ and $7$. A graph $G$ belongs to the class $W_2$ if every two pairwise disjoint independent sets in $G$ are included in two pairwise disjoint maximum independent sets. It is known that if $G$ belongs to the class $W_2$, then it is well-covered. A vertex $v \in V(G)$ is shedding if for every independent set $S \subseteq V(G)-N[v]$, there exists a vertex $u \in N(v)$ such that $S \cup \{u\}$ is independent. Shedding vertices play an important role in studying the class $W_2$. Recognizing shedding vertices is co-NP-complete, even when the input is restricted to triangle-free graphs. We prove that the problem is co-NP-complete for graphs without cycles of length $6$.
For a locally finite set, $A \subseteq \mathbb{R}^d$, the $k$-th Brillouin zone of $a \in A$ is the region of points $x \in \mathbb{R}^d$ for which $\|x-a\|$ is the $k$-th smallest among the Euclidean distances between $x$ and the points in $A$. If $A$ is a lattice, the $k$-th Brillouin zones of the points in $A$ are translates of each other, which tile space. Depending on the value of $k$, they express medium- or long-range order in the set. We study fundamental geometric and combinatorial properties of Brillouin zones, focusing on the integer lattice and its perturbations. Our results include the stability of a Brillouin zone under perturbations, a linear upper bound on the number of chambers in a zone for lattices in $\mathbb{R}^2$, and the convergence of the maximum volume of a chamber to zero for the integer lattice.
For any positive integer $q\geq 2$ and any real number $\delta\in(0,1)$, let $\alpha_q(n,\delta n)$ denote the maximum size of a subset of $\mathbb{Z}_q^n$ with minimum Hamming distance at least $\delta n$, where $\mathbb{Z}_q=\{0,1,\dotsc,q-1\}$ and $n\in\mathbb{N}$. The asymptotic rate function is defined by $ R_q(\delta) = \limsup_{n\rightarrow\infty}\frac{1}{n}\log_q\alpha_q(n,\delta n).$ The famous $q$-ary asymptotic Gilbert-Varshamov bound, obtained in the 1950s, states that \[ R_q(\delta) \geq 1 - \delta\log_q(q-1)-\delta\log_q\frac{1}{\delta}-(1-\delta)\log_q\frac{1}{1-\delta} \stackrel{\mathrm{def}}{=}R_\mathrm{GV}(\delta,q) \] for all positive integers $q\geq 2$ and $0<\delta<1-q^{-1}$. In the case that $q$ is an even power of a prime with $q\geq 49$, the $q$-ary Gilbert-Varshamov bound was firstly improved by using algebraic geometry codes in the works of Tsfasman, Vladut, and Zink and of Ihara in the 1980s. These algebraic geometry codes have been modified to improve the $q$-ary Gilbert-Varshamov bound $R_\mathrm{GV}(\delta,q)$ at a specific tangent point $\delta=\delta_0\in (0,1)$ of the curve $R_\mathrm{GV}(\delta,q)$ for each given integer $q\geq 46$. However, the $q$-ary Gilbert-Varshamov bound $R_\mathrm{GV}(\delta,q)$ at $\delta=1/2$, i.e., $R_\mathrm{GV}(1/2,q)$, remains the largest known lower bound of $R_q(1/2)$ for infinitely many positive integers $q$ which is a generic prime and which is a generic non-prime-power integer. In this paper, by using codes from geometry of numbers introduced by Lenstra in the 1980s, we prove that the $q$-ary Gilbert-Varshamov bound $R_\mathrm{GV}(\delta,q)$ with $\delta\in(0,1)$ can be improved for all but finitely many positive integers $q$. It is shown that the growth defined by $\eta(\delta)= \liminf_{q\rightarrow\infty}\frac{1}{\log q}\log[1-\delta-R_q(\delta)]^{-1}$ for every $\delta\in(0,1)$ has actually a nontrivial lower bound.
Consider a matroid where all elements are labeled with an element in $\mathbb{Z}$. We are interested in finding a base where the sum of the labels is congruent to $g \pmod m$. We show that this problem can be solved in $\tilde{O}(2^{4m} n r^{5/6})$ time for a matroid with $n$ elements and rank $r$, when $m$ is either the product of two primes or a prime power. The algorithm can be generalized to all moduli and, in fact, to all abelian groups if a classic additive combinatorics conjecture by Schrijver and Seymour holds true. We also discuss the optimization version of the problem.