亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Force-aware grasping is an essential capability for most robots in practical applications. Especially for compliant grippers, such as Fin-Ray grippers, it still remains challenging to build a bidirectional mathematical model that mutually maps the shape deformation and contact force. Part I of this article has constructed the force-displacement relationship for design optimization through the co-rotational theory. In Part II, we further devise a displacement-force mathematical model, enabling the compliant gripper to precisely estimate contact force from deformations sensor-free. The presented displacement-force model elaborately investigates contact forces and provides force feedback for a force control system of a gripper, where deformation appears as displacements in contact points. Afterward, simulation experiments are conducted to evaluate the performance of the proposed model through comparisons with the finite-element analysis (FEA) in Ansys. Simulation results reveal that the proposed model accurately estimates contact force, with an average error of around 3% and 4% for single or multiple node cases, respectively, regardless of various design parameters (Part I of this article is released in Arxiv1)

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 可理解性 · Analysis · 動量 · Engineering ·
2023 年 8 月 13 日

While software engineers are optimistically adopting crypto-API misuse detectors (or crypto-detectors) in their software development cycles, this momentum must be accompanied by a rigorous understanding of crypto-detectors' effectiveness at finding crypto-API misuses in practice. This demo paper presents the technical details and usage scenarios of our tool, namely Mutation Analysis for evaluating Static Crypto-API misuse detectors (MASC). We developed $12$ generalizable, usage based mutation operators and three mutation scopes, namely Main Scope, Similarity Scope, and Exhaustive Scope, which can be used to expressively instantiate compilable variants of the crypto-API misuse cases. Using MASC, we evaluated nine major crypto-detectors, and discovered $19$ unique, undocumented flaws. We designed MASC to be configurable and user-friendly; a user can configure the parameters to change the nature of generated mutations. Furthermore, MASC comes with both Command Line Interface and Web-based front-end, making it practical for users of different levels of expertise.

Timely, accurate, and reliable information is essential for decision-makers, emergency managers, and infrastructure operators during flood events. This study demonstrates a proposed machine learning model, MaxFloodCast, trained on physics-based hydrodynamic simulations in Harris County, offers efficient and interpretable flood inundation depth predictions. Achieving an average R-squared of 0.949 and a Root Mean Square Error of 0.61 ft on unseen data, it proves reliable in forecasting peak flood inundation depths. Validated against Hurricane Harvey and Storm Imelda, MaxFloodCast shows the potential in supporting near-time floodplain management and emergency operations. The model's interpretability aids decision-makers in offering critical information to inform flood mitigation strategies, to prioritize areas with critical facilities and to examine how rainfall in other watersheds influences flood exposure in one area. The MaxFloodCast model enables accurate and interpretable inundation depth predictions while significantly reducing computational time, thereby supporting emergency response efforts and flood risk management more effectively.

Knowledge distillation (KD), best known as an effective method for model compression, aims at transferring the knowledge of a bigger network (teacher) to a much smaller network (student). Conventional KD methods usually employ the teacher model trained in a supervised manner, where output labels are treated only as targets. Extending this supervised scheme further, we introduce a new type of teacher model for connectionist temporal classification (CTC)-based sequence models, namely Oracle Teacher, that leverages both the source inputs and the output labels as the teacher model's input. Since the Oracle Teacher learns a more accurate CTC alignment by referring to the target information, it can provide the student with more optimal guidance. One potential risk for the proposed approach is a trivial solution that the model's output directly copies the target input. Based on a many-to-one mapping property of the CTC algorithm, we present a training strategy that can effectively prevent the trivial solution and thus enables utilizing both source and target inputs for model training. Extensive experiments are conducted on two sequence learning tasks: speech recognition and scene text recognition. From the experimental results, we empirically show that the proposed model improves the students across these tasks while achieving a considerable speed-up in the teacher model's training time.

Intrusion detection systems (IDSs) built on artificial intelligence (AI) are presented as latent mechanisms for actively detecting fresh attacks over a complex network. Although review papers are used the systematic review or simple methods to analyse and criticize the anomaly NIDS works, the current review uses a traditional way as a quantitative description to find current gaps by synthesizing and summarizing the data comparison without considering algorithms performance. This paper presents a systematic and meta-analysis study of AI for network intrusion detection systems (NIDS) focusing on deep learning (DL) and machine learning (ML) approaches in network security. Deep learning algorithms are explained in their structure, and data intrusion network is justified based on an infrastructure of networks and attack types. By conducting a meta-analysis and debating the validation of the DL and ML approach by effectiveness, used dataset, detected attacks, classification task, and time complexity, we offer a thorough benchmarking assessment of the current NIDS-based publications-based systematic approach. The proposed method is considered reviewing works for the anomaly-based network intrusion detection system (anomaly-NIDS) models. Furthermore, the effectiveness of proposed algorithms and selected datasets are discussed for the recent direction and improvements of ML and DL to the NIDS. The future trends for improving an anomaly-IDS for continuing detection in the evolution of cyberattacks are highlighted in several research studies.

Multi-agent pathfinding (MAPF) is a critical field in many large-scale robotic applications, often being the fundamental step in multi-agent systems. The increasing complexity of MAPF in complex and crowded environments, however, critically diminishes the effectiveness of existing solutions. In contrast to other studies that have either presented a general overview of the recent advancements in MAPF or extensively reviewed Deep Reinforcement Learning (DRL) within multi-agent system settings independently, our work presented in this review paper focuses on highlighting the integration of DRL-based approaches in MAPF. Moreover, we aim to bridge the current gap in evaluating MAPF solutions by addressing the lack of unified evaluation metrics and providing comprehensive clarification on these metrics. Finally, our paper discusses the potential of model-based DRL as a promising future direction and provides its required foundational understanding to address current challenges in MAPF. Our objective is to assist readers in gaining insight into the current research direction, providing unified metrics for comparing different MAPF algorithms and expanding their knowledge of model-based DRL to address the existing challenges in MAPF.

Graph Lottery Ticket (GLT), a combination of core subgraph and sparse subnetwork, has been proposed to mitigate the computational cost of deep Graph Neural Networks (GNNs) on large input graphs while preserving original performance. However, the winning GLTs in exisiting studies are obtained by applying iterative magnitude-based pruning (IMP) without re-evaluating and re-considering the pruned information, which disregards the dynamic changes in the significance of edges/weights during graph/model structure pruning, and thus limits the appeal of the winning tickets. In this paper, we formulate a conjecture, i.e., existing overlooked valuable information in the pruned graph connections and model parameters which can be re-grouped into GLT to enhance the final performance. Specifically, we propose an adversarial complementary erasing (ACE) framework to explore the valuable information from the pruned components, thereby developing a more powerful GLT, referred to as the ACE-GLT. The main idea is to mine valuable information from pruned edges/weights after each round of IMP, and employ the ACE technique to refine the GLT processing. Finally, experimental results demonstrate that our ACE-GLT outperforms existing methods for searching GLT in diverse tasks. Our code will be made publicly available.

Existing approaches for information cascade prediction fall into three main categories: feature-driven methods, point process-based methods, and deep learning-based methods. Among them, deep learning-based methods, characterized by its superior learning and representation capabilities, mitigates the shortcomings inherent of the other methods. However, current deep learning methods still face several persistent challenges. In particular, accurate representation of user attributes remains problematic due to factors such as fake followers and complex network configurations. Previous algorithms that focus on the sequential order of user activations often neglect the rich insights offered by activation timing. Furthermore, these techniques often fail to holistically integrate temporal and structural aspects, thus missing the nuanced propagation trends inherent in information cascades.To address these issues, we propose the Cross-Domain Information Fusion Framework (CasCIFF), which is tailored for information cascade prediction. This framework exploits multi-hop neighborhood information to make user embeddings robust. When embedding cascades, the framework intentionally incorporates timestamps, endowing it with the ability to capture evolving patterns of information diffusion. In particular, the CasCIFF seamlessly integrates the tasks of user classification and cascade prediction into a consolidated framework, thereby allowing the extraction of common features that prove useful for all tasks, a strategy anchored in the principles of multi-task learning.

Many multi-agent systems require inter-agent communication to properly achieve their goal. By learning the communication protocol alongside the action protocol using multi-agent reinforcement learning techniques, the agents gain the flexibility to determine which information should be shared. However, when the number of agents increases we need to create an encoding of the information contained in these messages. In this paper, we investigate the effect of increasing the amount of information that should be contained in a message and increasing the number of agents. We evaluate these effects on two different message encoding methods, the mean message encoder and the attention message encoder. We perform our experiments on a matrix environment. Surprisingly, our results show that the mean message encoder consistently outperforms the attention message encoder. Therefore, we analyse the communication protocol used by the agents that use the mean message encoder and can conclude that the agents use a combination of an exponential and a logarithmic function in their communication policy to avoid the loss of important information after applying the mean message encoder.

Neural Machine Translation (NMT) is widely applied in software engineering tasks. The effectiveness of NMT for code retrieval relies on the ability to learn from the sequence of tokens in the source language to the sequence of tokens in the target language. While NMT performs well in pseudocode-to-code translation, it might have challenges in learning to translate from natural language query to source code in newly curated real-world code documentation/ implementation datasets. In this work, we analyze the performance of NMT in natural language-to-code translation in the newly curated CAT benchmark that includes the optimized versions of three Java datasets TLCodeSum, CodeSearchNet, Funcom, and a Python dataset PCSD. Our evaluation shows that NMT has low accuracy, measured by CrystalBLEU and Meteor metrics in this task. To alleviate the duty of NMT in learning complex representation of source code, we propose ASTTrans Representation, a tailored representation of an Abstract Syntax Tree (AST) using a subset of non-terminal nodes. We show that the classical approach NMT performs significantly better in learning ASTTrans Representation over code tokens with up to 36% improvement on Meteor score. Moreover, we leverage ASTTrans Representation to conduct combined code search processes from the state-of-the-art code search processes using GraphCodeBERT and UniXcoder. Our NMT models of learning ASTTrans Representation can boost the Mean Reciprocal Rank of these state-of-the-art code search processes by up to 3.08% and improve 23.08% of queries' results over the CAT benchmark.

Deep learning (DL)-based RF fingerprinting (RFFP) technology has emerged as a powerful physical-layer security mechanism, enabling device identification and authentication based on unique device-specific signatures that can be extracted from the received RF signals. However, DL-based RFFP methods face major challenges concerning their ability to adapt to domain (e.g., day/time, location, channel, etc.) changes and variability. This work proposes a novel IQ data representation and feature design, termed Double-Sided Envelope Power Spectrum or EPS, that is proven to overcome the domain adaptation problems significantly. By accurately capturing device hardware impairments while suppressing irrelevant domain information, EPS offers improved feature selection for DL models in RFFP. Experimental evaluations demonstrate its effectiveness, achieving over 99% testing accuracy in same-day/channel/location evaluations and 93% accuracy in cross-day evaluations, outperforming the traditional IQ representation. Additionally, EPS excels in cross-location evaluations, achieving a 95% accuracy. The proposed representation significantly enhances the robustness and generalizability of DL-based RFFP methods, thereby presenting a transformative solution to IQ data-based device fingerprinting.

北京阿比特科技有限公司