亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In a Monte-Carlo test, the observed dataset is fixed, and several resampled or permuted versions of the dataset are generated in order to test a null hypothesis that the original dataset is exchangeable with the resampled/permuted ones. Sequential Monte-Carlo tests aim to save computational resources by generating these additional datasets sequentially one by one, and potentially stopping early. While earlier tests yield valid inference at a particular prespecified stopping rule, our work develops a new anytime-valid Monte-Carlo test that can be continuously monitored, yielding a p-value or e-value at any stopping time possibly not specified in advance. Despite the added flexibility, it significantly outperforms the well-known method by Besag and Clifford, stopping earlier under both the null and the alternative without compromising power. The core technical advance is the development of new test martingales (nonnegative martingales with initial value one) for testing exchangeability against a very particular alternative. These test martingales are constructed using new and simple betting strategies that smartly bet on the relative ranks of generated test statistics. The betting strategies are guided by the derivation of a simple log-optimal betting strategy, have closed form expressions for the wealth process, provable guarantees on resampling risk, and display excellent power in practice.

相關內容

Age of Information (AoI) is an emerging metric used to assess the timeliness of information, gaining research interest in real-time multicast applications such as video streaming and metaverse platforms. In this paper, we consider a dynamic multicast network with energy constraints, where our objective is to minimize the expected time-average AoI through energy-constrained multicast routing and scheduling. The inherent complexity of the problem, given the NP-hardness and intertwined scheduling and routing decisions, makes existing approaches inapplicable. To address these challenges, we decompose the original problem into two subtasks, each amenable to reinforcement learning (RL) methods. Subsequently, we propose an innovative framework based on graph attention networks (GATs) to effectively capture graph information with superior generalization capabilities. To validate our framework, we conduct experiments on three datasets including a real-world dataset called AS-733, and show that our proposed scheme reduces the average weighted AoI by 62.9% and reduces the energy consumption by at most 72.5% compared to baselines.

Multi-label classification is a common challenge in various machine learning applications, where a single data instance can be associated with multiple classes simultaneously. The current paper proposes a novel tree-based method for multi-label classification using conformal prediction and multiple hypothesis testing. The proposed method employs hierarchical clustering with labelsets to develop a hierarchical tree, which is then formulated as a multiple-testing problem with a hierarchical structure. The split-conformal prediction method is used to obtain marginal conformal $p$-values for each tested hypothesis, and two \textit{hierarchical testing procedures} are developed based on marginal conformal $p$-values, including a hierarchical Bonferroni procedure and its modification for controlling the family-wise error rate. The prediction sets are thus formed based on the testing outcomes of these two procedures. We establish a theoretical guarantee of valid coverage for the prediction sets through proven family-wise error rate control of those two procedures. We demonstrate the effectiveness of our method in a simulation study and two real data analysis compared to other conformal methods for multi-label classification.

We propose a novel point-based representation, Gaussian surfels, to combine the advantages of the flexible optimization procedure in 3D Gaussian points and the surface alignment property of surfels. This is achieved by directly setting the z-scale of 3D Gaussian points to 0, effectively flattening the original 3D ellipsoid into a 2D ellipse. Such a design provides clear guidance to the optimizer. By treating the local z-axis as the normal direction, it greatly improves optimization stability and surface alignment. While the derivatives to the local z-axis computed from the covariance matrix are zero in this setting, we design a self-supervised normal-depth consistency loss to remedy this issue. Monocular normal priors and foreground masks are incorporated to enhance the quality of the reconstruction, mitigating issues related to highlights and background. We propose a volumetric cutting method to aggregate the information of Gaussian surfels so as to remove erroneous points in depth maps generated by alpha blending. Finally, we apply screened Poisson reconstruction method to the fused depth maps to extract the surface mesh. Experimental results show that our method demonstrates superior performance in surface reconstruction compared to state-of-the-art neural volume rendering and point-based rendering methods.

growclusters for R is a package that estimates a partition structure for multivariate data. It does this by implementing a hierarchical version of k-means clustering that accounts for possible known dependencies in a collection of datasets, where each set draws its cluster means from a single, global partition. Each component data set in the collection corresponds to a known group in the data. This paper focuses on R Shiny applications that implement the clustering methodology and simulate data sets with known group structures. These Shiny applications implement novel ways of visualizing the results of the clustering. These visualizations include scatterplots of individual data sets in the context of the entire collection and cluster distributions versus component (or sub-domain) datasets. Data obtained from a collection of 2000-2013 articles from the Bureau of Labor Statistics (BLS) Monthly Labor Review (MLR) will be used to illustrate the R-Shiny applications. Here, the known grouping in the collection is the year of publication.

Automated fact-checking (AFC) is garnering increasing attention by researchers aiming to help fact-checkers combat the increasing spread of misinformation online. While many existing AFC methods incorporate external information from the Web to help examine the veracity of claims, they often overlook the importance of verifying the source and quality of collected "evidence". One overlooked challenge involves the reliance on "leaked evidence", information gathered directly from fact-checking websites and used to train AFC systems, resulting in an unrealistic setting for early misinformation detection. Similarly, the inclusion of information from unreliable sources can undermine the effectiveness of AFC systems. To address these challenges, we present a comprehensive approach to evidence verification and filtering. We create the "CREDible, Unreliable or LEaked" (CREDULE) dataset, which consists of 91,632 articles classified as Credible, Unreliable and Fact checked (Leaked). Additionally, we introduce the EVidence VERification Network (EVVER-Net), trained on CREDULE to detect leaked and unreliable evidence in both short and long texts. EVVER-Net can be used to filter evidence collected from the Web, thus enhancing the robustness of end-to-end AFC systems. We experiment with various language models and show that EVVER-Net can demonstrate impressive performance of up to 91.5% and 94.4% accuracy, while leveraging domain credibility scores along with short or long texts, respectively. Finally, we assess the evidence provided by widely-used fact-checking datasets including LIAR-PLUS, MOCHEG, FACTIFY, NewsCLIPpings+ and VERITE, some of which exhibit concerning rates of leaked and unreliable evidence.

Model averaging (MA), a technique for combining estimators from a set of candidate models, has attracted increasing attention in machine learning and statistics. In the existing literature, there is an implicit understanding that MA can be viewed as a form of shrinkage estimation that draws the response vector towards the subspaces spanned by the candidate models. This paper explores this perspective by establishing connections between MA and shrinkage in a linear regression setting with multiple nested models. We first demonstrate that the optimal MA estimator is the best linear estimator with monotonically non-increasing weights in a Gaussian sequence model. The Mallows MA (MMA), which estimates weights by minimizing the Mallows' $C_p$ over the unit simplex, can be viewed as a variation of the sum of a set of positive-part Stein estimators. Indeed, the latter estimator differs from the MMA only in that its optimization of Mallows' $C_p$ is within a suitably relaxed weight set. Motivated by these connections, we develop a novel MA procedure based on a blockwise Stein estimation. The resulting Stein-type MA estimator is asymptotically optimal across a broad parameter space when the variance is known. Numerical results support our theoretical findings. The connections established in this paper may open up new avenues for investigating MA from different perspectives. A discussion on some topics for future research concludes the paper.

In typed functional languages, one can typically only manipulate data in a type-safe manner if it first has been deserialised into an in-memory tree represented as a graph of nodes-as-structs and subterms-as-pointers. We demonstrate how we can use QTT as implemented in \idris{} to define a small universe of serialised datatypes, and provide generic programs allowing users to process values stored contiguously in buffers. Our approach allows implementors to prove the full functional correctness by construction of the IO functions processing the data stored in the buffer.

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.

To retrieve more relevant, appropriate and useful documents given a query, finding clues about that query through the text is crucial. Recent deep learning models regard the task as a term-level matching problem, which seeks exact or similar query patterns in the document. However, we argue that they are inherently based on local interactions and do not generalise to ubiquitous, non-consecutive contextual relationships.In this work, we propose a novel relevance matching model based on graph neural networks to leverage the document-level word relationships for ad-hoc retrieval. In addition to the local interactions, we explicitly incorporate all contexts of a term through the graph-of-word text format. Matching patterns can be revealed accordingly to provide a more accurate relevance score. Our approach significantly outperforms strong baselines on two ad-hoc benchmarks. We also experimentally compare our model with BERT and show our ad-vantages on long documents.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司