The framework of multi-agent learning explores the dynamics of how individual agent strategies evolve in response to the evolving strategies of other agents. Of particular interest is whether or not agent strategies converge to well known solution concepts such as Nash Equilibrium (NE). Most ``fixed order'' learning dynamics restrict an agent's underlying state to be its own strategy. In ``higher order'' learning, agent dynamics can include auxiliary states that can capture phenomena such as path dependencies. We introduce higher-order gradient play dynamics that resemble projected gradient ascent with auxiliary states. The dynamics are ``payoff based'' in that each agent's dynamics depend on its own evolving payoff. While these payoffs depend on the strategies of other agents in a game setting, agent dynamics do not depend explicitly on the nature of the game or the strategies of other agents. In this sense, dynamics are ``uncoupled'' since an agent's dynamics do not depend explicitly on the utility functions of other agents. We first show that for any specific game with an isolated completely mixed-strategy NE, there exist higher-order gradient play dynamics that lead (locally) to that NE, both for the specific game and nearby games with perturbed utility functions. Conversely, we show that for any higher-order gradient play dynamics, there exists a game with a unique isolated completely mixed-strategy NE for which the dynamics do not lead to NE. These results build on prior work that showed that uncoupled fixed-order learning cannot lead to NE in certain instances, whereas higher-order variants can. Finally, we consider the mixed-strategy equilibrium associated with coordination games. While higher-order gradient play can converge to such equilibria, we show such dynamics must be inherently internally unstable.
An important open question in human-robot interaction (HRI) is precisely when an agent should decide to communicate, particularly in a cooperative task. Perceptual Control Theory (PCT) tells us that agents are able to cooperate on a joint task simply by sharing the same 'intention', thereby distributing the effort required to complete the task among the agents. This is even true for agents that do not possess the same abilities, so long as the goal is observable, the combined actions are sufficient to complete the task, and there is no local minimum in the search space. If these conditions hold, then a cooperative task can be accomplished without any communication between the contributing agents. However, for tasks that do contain local minima, the global solution can only be reached if at least one of the agents adapts its intention at the appropriate moments, and this can only be achieved by appropriately timed communication. In other words, it is hypothesised that in cooperative tasks, the function of communication is to coordinate actions in a complex search space that contains local minima. These principles have been verified in a computer-based simulation environment in which two independent one-dimensional agents are obliged to cooperate in order to solve a two-dimensional path-finding task.
Deep feedforward and recurrent rate-based neural networks have become successful functional models of the brain, but they neglect obvious biological details such as spikes and Dale's law. Here we argue that these details are crucial in order to understand how real neural circuits operate. Towards this aim, we put forth a new framework for spike-based computation in low-rank excitatory-inhibitory spiking networks. By considering populations with rank-1 connectivity, we cast each neuron's spiking threshold as a boundary in a low-dimensional input-output space. We then show how the combined thresholds of a population of inhibitory neurons form a stable boundary in this space, and those of a population of excitatory neurons form an unstable boundary. Combining the two boundaries results in a rank-2 excitatory-inhibitory (EI) network with inhibition-stabilized dynamics at the intersection of the two boundaries. The computation of the resulting networks can be understood as the difference of two convex functions, and is thereby capable of approximating arbitrary non-linear input-output mappings. We demonstrate several properties of these networks, including noise suppression and amplification, irregular activity and synaptic balance, as well as how they relate to rate network dynamics in the limit that the boundary becomes soft. Finally, while our work focuses on small networks (5-50 neurons), we discuss potential avenues for scaling up to much larger networks. Overall, our work proposes a new perspective on spiking networks that may serve as a starting point for a mechanistic understanding of biological spike-based computation.
In this paper, we focus on the high-dimensional double sparse structure, where the parameter of interest simultaneously encourages group-wise sparsity and element-wise sparsity in each group. By combining the Gilbert-Varshamov bound and its variants, we develop a novel lower bound technique for the metric entropy of the parameter space, specifically tailored for the double sparse structure over $\ell_u(\ell_q)$-balls with $u,q \in [0,1]$. We prove lower bounds on the estimation error using an information-theoretic approach, leveraging our proposed lower bound technique and Fano's inequality. To complement the lower bounds, we establish matching upper bounds through a direct analysis of constrained least-squares estimators and utilize results from empirical processes. A significant finding of our study is the discovery of a phase transition phenomenon in the minimax rates for $u,q \in (0, 1]$. Furthermore, we extend the theoretical results to the double sparse regression model and determine its minimax rate for estimation error. To tackle double sparse linear regression, we develop the DSIHT (Double Sparse Iterative Hard Thresholding) algorithm, demonstrating its optimality in the minimax sense. Finally, we demonstrate the superiority of our method through numerical experiments.
Recently, many researchers have studied strategic games inspired by Schelling's influential model of residential segregation. In this model, agents belonging to $k$ different types are placed at the nodes of a network. Agents can be either stubborn, in which case they will always choose their preferred location, or strategic, in which case they aim to maximize the fraction of agents of their own type in their neighborhood. In the so-called Schelling games inspired by this model, strategic agents are assumed to be similarity-seeking: their utility is defined as the fraction of its neighbors of the same type as itself. In this paper, we introduce a new type of strategic jump game in which agents are instead diversity-seeking: the utility of an agent is defined as the fraction of its neighbors that is of a different type than itself. We show that it is NP-hard to determine the existence of an equilibrium in such games, if some agents are stubborn. However, in trees, our diversity-seeking jump game always admits a pure Nash equilibrium, if all agents are strategic. In regular graphs and spider graphs with a single empty node, as well as in all paths, we prove a stronger result: the game is a potential game, that is, improving response dynamics will always converge to a Nash equilibrium from any initial placement of agents.
We consider "surrounding" versions of the classic Cops and Robber game. The game is played on a connected graph in which two players, one controlling a number of cops and the other controlling a robber, take alternating turns. In a turn, each player may move each of their pieces: The robber always moves between adjacent vertices. Regarding the moves of the cops we distinguish four versions that differ in whether the cops are on the vertices or the edges of the graph and whether the robber may move on/through them. The goal of the cops is to surround the robber, i.e., occupying all neighbors (vertex version) or incident edges (edge version) of the robber's current vertex. In contrast, the robber tries to avoid being surrounded indefinitely. Given a graph, the so-called cop number denotes the minimum number of cops required to eventually surround the robber. We relate the different cop numbers of these versions and prove that none of them is bounded by a function of the classical cop number and the maximum degree of the graph, thereby refuting a conjecture by Crytser, Komarov and Mackey [Graphs and Combinatorics, 2020].
Probabilistic couplings are the foundation for many probabilistic relational program logics and arise when relating random sampling statements across two programs. In relational program logics, this manifests as dedicated coupling rules that, e.g., say we may reason as if two sampling statements return the same value. However, this approach fundamentally requires aligning or "synchronizing" the sampling statements of the two programs which is not always possible. In this paper, we develop Clutch, a higher-order probabilistic relational separation logic that addresses this issue by supporting asynchronous probabilistic couplings. We use Clutch to develop a logical step-indexed logical relational to reason about contextual refinement and equivalence of higher-order programs written in a rich language with higher-order local state and impredicative polymorphism. Finally, we demonstrate the usefulness of our approach on a number of case studies. All the results that appear in the paper have been formalized in the Coq proof assistant using the Coquelicot library and the Iris separation logic framework.
We introduce a game model called "customer attraction game" to demonstrate the competition among online content providers. In this model, customers exhibit interest in various topics. Each content provider selects one topic and benefits from the attracted customers. We investigate both symmetric and asymmetric settings involving agents and customers. In the symmetric setting, the existence of pure Nash equilibrium (PNE) is guaranteed, but finding a PNE is PLS-complete. To address this, we propose a fully polynomial time approximation scheme to identify an approximate PNE. Moreover, the tight Price of Anarchy (PoA) is established. In the asymmetric setting, we show the nonexistence of PNE in certain instances and establish that determining its existence is NP-hard. Nevertheless, we prove the existence of an approximate PNE. Additionally, when agents select topics sequentially, we demonstrate that finding a subgame-perfect equilibrium is PSPACE-hard. Furthermore, we present the sequential PoA for the two-agent setting.
We consider a cooperative multi-agent system consisting of a team of agents with decentralized information. Our focus is on the design of symmetric (i.e. identical) strategies for the agents in order to optimize a finite horizon team objective. We start with a general information structure and then consider some special cases. The constraint of using symmetric strategies introduces new features and complications in the team problem. For example, we show in a simple example that randomized symmetric strategies may outperform deterministic symmetric strategies. We also discuss why some of the known approaches for reducing agents' private information in teams may not work under the constraint of symmetric strategies. We then adopt the common information approach for our problem and modify it to accommodate the use of symmetric strategies. This results in a common information based dynamic program where each step involves minimization over a single function from the space of an agent's private information to the space of probability distributions over actions. We present specialized models where private information can be reduced using simple dynamic program based arguments.
Continuous space species distribution models (SDMs) have a long-standing history as a valuable tool in ecological statistical analysis. Geostatistical and preferential models are both common models in ecology. Geostatistical models are employed when the process under study is independent of the sampling locations, while preferential models are employed when sampling locations are dependent on the process under study. But, what if we have both types of data collectd over the same process? Can we combine them? If so, how should we combine them? This study investigated the suitability of both geostatistical and preferential models, as well as a mixture model that accounts for the different sampling schemes. Results suggest that in general the preferential and mixture models have satisfactory and close results in most cases, while the geostatistical models presents systematically worse estimates at higher spatial complexity, smaller number of samples and lower proportion of completely random samples.
Recently, deep multiagent reinforcement learning (MARL) has become a highly active research area as many real-world problems can be inherently viewed as multiagent systems. A particularly interesting and widely applicable class of problems is the partially observable cooperative multiagent setting, in which a team of agents learns to coordinate their behaviors conditioning on their private observations and commonly shared global reward signals. One natural solution is to resort to the centralized training and decentralized execution paradigm. During centralized training, one key challenge is the multiagent credit assignment: how to allocate the global rewards for individual agent policies for better coordination towards maximizing system-level's benefits. In this paper, we propose a new method called Q-value Path Decomposition (QPD) to decompose the system's global Q-values into individual agents' Q-values. Unlike previous works which restrict the representation relation of the individual Q-values and the global one, we leverage the integrated gradient attribution technique into deep MARL to directly decompose global Q-values along trajectory paths to assign credits for agents. We evaluate QPD on the challenging StarCraft II micromanagement tasks and show that QPD achieves the state-of-the-art performance in both homogeneous and heterogeneous multiagent scenarios compared with existing cooperative MARL algorithms.