{mayi_des}
Existing error correction mechanisms in lattice-based public key encryption (PKE) rely on either naive modulation or its concatenation with error correction codes (ECC). This paper shows that lattice coding, as a joint ECC and modulation technique, can substitute the naive modulation in existing lattice-based PKEs to enjoy better correction performance. We begin by modeling the FrodoPKE protocol as a noisy point-to-point communication system, where the communication channel is similar to the additive white Gaussian noise (AWGN) channel. To employ lattice codes for this special channel that hinges on hypercube shaping, we propose an efficient labeling function that converts between binary information bits and lattice codewords. The parameter sets of FrodoPKE are improved towards either higher security levels or smaller ciphertext sizes. For example, the proposed Frodo-1344-E$_\text{8}$ has a 10-bit classical security gain over Frodo-1344.
Recent advances in the development of large language models are rapidly changing how online applications function. LLM-based search tools, for instance, offer a natural language interface that can accommodate complex queries and provide detailed, direct responses. At the same time, there have been concerns about the veracity of the information provided by LLM-based tools due to potential mistakes or fabrications that can arise in algorithmically generated text. In a set of online experiments we investigate how LLM-based search changes people's behavior relative to traditional search, and what can be done to mitigate overreliance on LLM-based output. Participants in our experiments were asked to solve a series of decision tasks that involved researching and comparing different products, and were randomly assigned to do so with either an LLM-based search tool or a traditional search engine. In our first experiment, we find that participants using the LLM-based tool were able to complete their tasks more quickly, using fewer but more complex queries than those who used traditional search. Moreover, these participants reported a more satisfying experience with the LLM-based search tool. When the information presented by the LLM was reliable, participants using the tool made decisions with a comparable level of accuracy to those using traditional search, however we observed overreliance on incorrect information when the LLM erred. Our second experiment further investigated this issue by randomly assigning some users to see a simple color-coded highlighting scheme to alert them to potentially incorrect or misleading information in the LLM responses. Overall we find that this confidence-based highlighting substantially increases the rate at which users spot incorrect information, improving the accuracy of their overall decisions while leaving most other measures unaffected.
Passive millimeter-wave (PMMW) is a significant potential technique for human security screening. Several popular object detection networks have been used for PMMW images. However, restricted by the low resolution and high noise of PMMW images, PMMW hidden object detection based on deep learning usually suffers from low accuracy and low classification confidence. To tackle the above problems, this paper proposes a Task-Aligned Detection Transformer network, named PMMW-DETR. In the first stage, a Denoising Coarse-to-Fine Transformer (DCFT) backbone is designed to extract long- and short-range features in the different scales. In the second stage, we propose the Query Selection module to introduce learned spatial features into the network as prior knowledge, which enhances the semantic perception capability of the network. In the third stage, aiming to improve the classification performance, we perform a Task-Aligned Dual-Head block to decouple the classification and regression tasks. Based on our self-developed PMMW security screening dataset, experimental results including comparison with State-Of-The-Art (SOTA) methods and ablation study demonstrate that the PMMW-DETR obtains higher accuracy and classification confidence than previous works, and exhibits robustness to the PMMW images of low quality.
Semantic communication has gained significant attention from researchers as a promising technique to replace conventional communication in the next generation of communication systems, primarily due to its ability to reduce communication costs. However, little literature has studied its effectiveness in multi-user scenarios, particularly when there are variations in the model architectures used by users and their computing capacities. To address this issue, we explore a semantic communication system that caters to multiple users with different model architectures by using a multi-purpose transmitter at the base station (BS). Specifically, the BS in the proposed framework employs semantic and channel encoders to encode the image for transmission, while the receiver utilizes its local channel and semantic decoder to reconstruct the original image. Our joint source-channel encoder at the BS can effectively extract and compress semantic features for specific users by considering the signal-to-noise ratio (SNR) and computing capacity of the user. Based on the network status, the joint source-channel encoder at the BS can adaptively adjust the length of the transmitted signal. A longer signal ensures more information for high-quality image reconstruction for the user, while a shorter signal helps avoid network congestion. In addition, we propose a hybrid loss function for training, which enhances the perceptual details of reconstructed images. Finally, we conduct a series of extensive evaluations and ablation studies to validate the effectiveness of the proposed system.
In-band full-duplex relay (FDR) has attracted much attention as an effective solution to improve the coverage and spectral efficiency in wireless communication networks. The basic problem for FDR transmission is how to eliminate the inherent self-interference and re-use the residual self-interference (RSI) at the relay to improve the end-to-end performance. Considering the RSI at the FDR, the overall equivalent channel can be modeled as an infinite impulse response (IIR) channel. For this IIR channel, a joint design for precoding, power gain control and equalization of cooperative OFDM relay systems is presented. Compared with the traditional OFDM systems, the length of the guard interval for the proposed design can be distinctly reduced, thereby improving the spectral efficiency. By analyzing the noise sources, this paper evaluates the signal to noise ratio (SNR) of the proposed scheme and presents a power gain control algorithm at the FDR. Compared with the existing schemes, the proposed scheme shows a superior bit error rate (BER) performance.
For all the successes in verifying low-level, efficient, security-critical code, little has been said or studied about the structure, architecture and engineering of such large-scale proof developments. We present the design, implementation and evaluation of a set of language-based techniques that allow the programmer to modularly write and verify code at a high level of abstraction, while retaining control over the compilation process and producing high-quality, zero-overhead, low-level code suitable for integration into mainstream software. We implement our techniques within the F* proof assistant, and specifically its shallowly-embedded Low* toolchain that compiles to C. Through our evaluation, we establish that our techniques were critical in scaling the popular HACL* library past 100,000 lines of verified source code, and brought about significant gains in proof engineer productivity. The exposition of our methodology converges on one final, novel case study: the streaming API, a finicky API that has historically caused many bugs in high-profile software. Using our approach, we manage to capture the streaming semantics in a generic way, and apply it ``for free'' to over a dozen use-cases. Six of those have made it into the reference implementation of the Python programming language, replacing the previous CVE-ridden code.
Kolam is a ritual art form practised by people in South India and consists of rule-bound geometric patterns of dots and lines. Single loop Kolams are mathematical closed loop patterns drawn over a grid of dots and conforming to certain heuristics. In this work, we propose a novel encoding scheme where we map the angular movements of Kolam at lattice points into sequences containing $4$ distinct symbols. This is then used to simulate single loop Kolam procedure via turtle moves in accordance with the desired angular direction at specific points. We thus obtain sequential codes for Kolams, unique up to cyclic permutations. We specify the requirements for the algorithm and indicate the general methodology. We demonstrate a sample of Kolams using our algorithm with a software implementation in Python.
Numerical modeling of localizations is a challenging task due to the evolving rough solution in which the localization paths are not predefined. Despite decades of efforts, there is a need for innovative discretization-independent computational methods to predict the evolution of localizations. In this work, an improved version of the neural network-enhanced Reproducing Kernel Particle Method (NN-RKPM) is proposed for modeling brittle fracture. In the proposed method, a background reproducing kernel (RK) approximation defined on a coarse and uniform discretization is enriched by a neural network (NN) approximation under a Partition of Unity framework. In the NN approximation, the deep neural network automatically locates and inserts regularized discontinuities in the function space. The NN-based enrichment functions are then patched together with RK approximation functions using RK as a Partition of Unity patching function. The optimum NN parameters defining the location, orientation, and displacement distribution across location together with RK approximation coefficients are obtained via the energy-based loss function minimization. To regularize the NN-RK approximation, a constraint on the spatial gradient of the parametric coordinates is imposed in the loss function. Analysis of the convergence properties shows that the solution convergence of the proposed method is guaranteed. The effectiveness of the proposed method is demonstrated by a series of numerical examples involving damage propagation and branching.
The multivariate adaptive regression spline (MARS) is one of the popular estimation methods for nonparametric multivariate regressions. However, as MARS is based on marginal splines, to incorporate interactions of covariates, products of the marginal splines must be used, which leads to an unmanageable number of basis functions when the order of interaction is high and results in low estimation efficiency. In this paper, we improve the performance of MARS by using linear combinations of the covariates which achieve sufficient dimension reduction. The special basis functions of MARS facilitate calculation of gradients of the regression function, and estimation of the linear combinations is obtained via eigen-analysis of the outer-product of the gradients. Under some technical conditions, the asymptotic theory is established for the proposed estimation method. Numerical studies including both simulation and empirical applications show its effectiveness in dimension reduction and improvement over MARS and other commonly-used nonparametric methods in regression estimation and prediction.
3D speech enhancement can effectively improve the auditory experience and plays a crucial role in augmented reality technology. However, traditional convolutional-based speech enhancement methods have limitations in extracting dynamic voice information. In this paper, we incorporate a dual-path recurrent neural network block into the U-Net to iteratively extract dynamic audio information in both the time and frequency domains. And an attention mechanism is proposed to fuse the original signal, reference signal, and generated masks. Moreover, we introduce a loss function to simultaneously optimize the network in the time-frequency and time domains. Experimental results show that our system outperforms the state-of-the-art systems on the dataset of ICASSP L3DAS23 challenge.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.