In recent years, the Adaptive Antoulas-Anderson AAA algorithm has established itself as the method of choice for solving rational approximation problems. Data-driven Model Order Reduction (MOR) of large-scale Linear Time-Invariant (LTI) systems represents one of the many applications in which this algorithm has proven to be successful since it typically generates reduced-order models (ROMs) efficiently and in an automated way. Despite its effectiveness and numerical reliability, the classical AAA algorithm is not guaranteed to return a ROM that retains the same structural features of the underlying dynamical system, such as the stability of the dynamics. In this paper, we propose a novel algebraic characterization for the stability of ROMs with transfer function obeying the AAA barycentric structure. We use this characterization to formulate a set of convex constraints on the free coefficients of the AAA model that, whenever verified, guarantee by construction the asymptotic stability of the resulting ROM. We suggest how to embed such constraints within the AAA optimization routine, and we validate experimentally the effectiveness of the resulting algorithm, named stabAAA, over a set of relevant MOR applications.
Understanding a surgical scene is crucial for computer-assisted surgery systems to provide any intelligent assistance functionality. One way of achieving this scene understanding is via scene segmentation, where every pixel of a frame is classified and therefore identifies the visible structures and tissues. Progress on fully segmenting surgical scenes has been made using machine learning. However, such models require large amounts of annotated training data, containing examples of all relevant object classes. Such fully annotated datasets are hard to create, as every pixel in a frame needs to be annotated by medical experts and, therefore, are rarely available. In this work, we propose a method to combine multiple partially annotated datasets, which provide complementary annotations, into one model, enabling better scene segmentation and the use of multiple readily available datasets. Our method aims to combine available data with complementary labels by leveraging mutual exclusive properties to maximize information. Specifically, we propose to use positive annotations of other classes as negative samples and to exclude background pixels of binary annotations, as we cannot tell if they contain a class not annotated but predicted by the model. We evaluate our method by training a DeepLabV3 on the publicly available Dresden Surgical Anatomy Dataset, which provides multiple subsets of binary segmented anatomical structures. Our approach successfully combines 6 classes into one model, increasing the overall Dice Score by 4.4% compared to an ensemble of models trained on the classes individually. By including information on multiple classes, we were able to reduce confusion between stomach and colon by 24%. Our results demonstrate the feasibility of training a model on multiple datasets. This paves the way for future work further alleviating the need for one large, fully segmented datasets.
Although metaheuristics have been widely recognized as efficient techniques to solve real-world optimization problems, implementing them from scratch remains difficult for domain-specific experts without programming skills. In this scenario, metaheuristic optimization frameworks are a practical alternative as they provide a variety of algorithms composed of customized elements, as well as experimental support. Recently, many engineering problems require to optimize multiple or even many objectives, increasing the interest in appropriate metaheuristic algorithms and frameworks that might integrate new specific requirements while maintaining the generality and reusability principles they were conceived for. Based on this idea, this paper introduces JCLEC-MO, a Java framework for both multi- and many-objective optimization that enables engineers to apply, or adapt, a great number of multi-objective algorithms with little coding effort. A case study is developed and explained to show how JCLEC-MO can be used to address many-objective engineering problems, often requiring the inclusion of domain-specific elements, and to analyze experimental outcomes by means of conveniently connected R utilities.
Machine learning techniques, in particular the so-called normalizing flows, are becoming increasingly popular in the context of Monte Carlo simulations as they can effectively approximate target probability distributions. In the case of lattice field theories (LFT) the target distribution is given by the exponential of the action. The common loss function's gradient estimator based on the "reparametrization trick" requires the calculation of the derivative of the action with respect to the fields. This can present a significant computational cost for complicated, non-local actions like e.g. fermionic action in QCD. In this contribution, we propose an estimator for normalizing flows based on the REINFORCE algorithm that avoids this issue. We apply it to two dimensional Schwinger model with Wilson fermions at criticality and show that it is up to ten times faster in terms of the wall-clock time as well as requiring up to $30\%$ less memory than the reparameterization trick estimator. It is also more numerically stable allowing for single precision calculations and the use of half-float tensor cores. We present an in-depth analysis of the origins of those improvements. We believe that these benefits will appear also outside the realm of the LFT, in each case where the target probability distribution is computationally intensive.
The approach to analysing compositional data has been dominated by the use of logratio transformations, to ensure exact subcompositional coherence and, in some situations, exact isometry as well. A problem with this approach is that data zeros, found in most applications, have to be replaced to allow the logarithmic transformation. An alternative new approach, called the `chiPower' transformation, which allows data zeros, is to combine the standardization inherent in the chi-square distance in correspondence analysis, with the essential elements of the Box-Cox power transformation. The chiPower transformation is justified because it} defines between-sample distances that tend to logratio distances for strictly positive data as the power parameter tends to zero, and are then equivalent to transforming to logratios. For data with zeros, a value of the power can be identified that brings the chiPower transformation as close as possible to a logratio transformation, without having to substitute the zeros. Especially in the area of high-dimensional data, this alternative approach can present such a high level of coherence and isometry as to be a valid approach to the analysis of compositional data. Furthermore, in a supervised learning context, if the compositional variables serve as predictors of a response in a modelling framework, for example generalized linear models, then the power can be used as a tuning parameter in optimizing the accuracy of prediction through cross-validation. The chiPower-transformed variables have a straightforward interpretation, since they are each identified with single compositional parts, not ratios.
With the growing demand of mineral consumption, the management of the mining waste is crucial. Cemented paste backfill (CPB) is one of the techniques developed by the mining industry to fill the voids generated by the excavation of underground spaces. The CPB process is the subject of various studies aimed at optimizing its implementation in the field. In this article, we focus on the modelling of the backfill phase where it has been shown in [Vigneaux et al., Cem. Concr. Res. 164 (2023) 107038] that a viscoplastic lubrication model can be used to describe CPB experiments. The aim here is to propose an accelerated method for performing the parameters' estimation of the properties of the paste (typically its rheological properties), with an inverse problem procedure based on observed height profiles of the paste. The inversion procedure is based on a metamodel built from an initial partial differential equation model, thanks to a Polynomial Chaos Expansion coupled with a Principal Component Analysis.
The categorical Gini covariance is a dependence measure between a numerical variable and a categorical variable. The Gini covariance measures dependence by quantifying the difference between the conditional and unconditional distributional functions. A value of zero for the categorical Gini covariance implies independence of the numerical variable and the categorical variable. We propose a non-parametric test for testing the independence between a numerical and categorical variable using the categorical Gini covariance. We used the theory of U-statistics to find the test statistics and study the properties. The test has an asymptotic normal distribution. As the implementation of a normal-based test is difficult, we develop a jackknife empirical likelihood (JEL) ratio test for testing independence. Extensive Monte Carlo simulation studies are carried out to validate the performance of the proposed JEL-based test. We illustrate the test procedure using real a data set.
Transport-based density estimation methods are receiving growing interest because of their ability to efficiently generate samples from the approximated density. We further invertigate the sequential transport maps framework proposed from arXiv:2106.04170 arXiv:2303.02554, which builds on a sequence of composed Knothe-Rosenblatt (KR) maps. Each of those maps are built by first estimating an intermediate density of moderate complexity, and then by computing the exact KR map from a reference density to the precomputed approximate density. In our work, we explore the use of Sum-of-Squares (SoS) densities and $\alpha$-divergences for approximating the intermediate densities. Combining SoS densities with $\alpha$-divergence interestingly yields convex optimization problems which can be efficiently solved using semidefinite programming. The main advantage of $\alpha$-divergences is to enable working with unnormalized densities, which provides benefits both numerically and theoretically. In particular, we provide two new convergence analyses of the sequential transport maps: one based on a triangle-like inequality and the second on information geometric properties of $\alpha$-divergences for unnormalizied densities. The choice of intermediate densities is also crucial for the efficiency of the method. While tempered (or annealed) densities are the state-of-the-art, we introduce diffusion-based intermediate densities which permits to approximate densities known from samples only. Such intermediate densities are well-established in machine learning for generative modeling. Finally we propose and try different low-dimensional maps (or lazy maps) for dealing with high-dimensional problems and numerically demonstrate our methods on several benchmarks, including Bayesian inference problems and unsupervised learning task.
With advances in scientific computing and mathematical modeling, complex scientific phenomena such as galaxy formations and rocket propulsion can now be reliably simulated. Such simulations can however be very time-intensive, requiring millions of CPU hours to perform. One solution is multi-fidelity emulation, which uses data of different fidelities to train an efficient predictive model which emulates the expensive simulator. For complex scientific problems and with careful elicitation from scientists, such multi-fidelity data may often be linked by a directed acyclic graph (DAG) representing its scientific model dependencies. We thus propose a new Graphical Multi-fidelity Gaussian Process (GMGP) model, which embeds this DAG structure (capturing scientific dependencies) within a Gaussian process framework. We show that the GMGP has desirable modeling traits via two Markov properties, and admits a scalable algorithm for recursive computation of the posterior mean and variance along at each depth level of the DAG. We also present a novel experimental design methodology over the DAG given an experimental budget, and propose a nonlinear extension of the GMGP via deep Gaussian processes. The advantages of the GMGP are then demonstrated via a suite of numerical experiments and an application to emulation of heavy-ion collisions, which can be used to study the conditions of matter in the Universe shortly after the Big Bang. The proposed model has broader uses in data fusion applications with graphical structure, which we further discuss.
We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.
The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.