亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Continuous authentication has been widely studied to provide high security and usability for mobile devices by continuously monitoring and authenticating users. Recent studies adopt multibiometric fusion for continuous authentication to provide high accuracy even when some of captured biometric data are of a low quality. However, existing continuous fusion approaches are resource-heavy as they rely on all classifiers being activated all the time and may not be suitable for mobile devices. In this paper, we propose a new approach to multibiometric continuous authentication: two-dimensional dynamic fusion. Our key insight is that multibiometric continuous authentication calculates two-dimensional matching scores over classifiers and over time. Based on this, we dynamically select a set of classifiers based on the context in which authentication is taking place, and fuse matching scores by multi-classifier fusion and multi-sample fusion. Through experimental evaluation, we show that our approach provides a better balance between resource usage and accuracy than the existing fusion methods. In particular, we show that our approach provides higher accuracy than the existing methods with the same number of score calculations by adopting multi-sample fusion.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

Capsule networks (CapsNets) aim to parse images into a hierarchy of objects, parts, and their relations using a two-step process involving part-whole transformation and hierarchical component routing. However, this hierarchical relationship modeling is computationally expensive, which has limited the wider use of CapsNet despite its potential advantages. The current state of CapsNet models primarily focuses on comparing their performance with capsule baselines, falling short of achieving the same level of proficiency as deep CNN variants in intricate tasks. To address this limitation, we present an efficient approach for learning capsules that surpasses canonical baseline models and even demonstrates superior performance compared to high-performing convolution models. Our contribution can be outlined in two aspects: firstly, we introduce a group of subcapsules onto which an input vector is projected. Subsequently, we present the Hybrid Gromov-Wasserstein framework, which initially quantifies the dissimilarity between the input and the components modeled by the subcapsules, followed by determining their alignment degree through optimal transport. This innovative mechanism capitalizes on new insights into defining alignment between the input and subcapsules, based on the similarity of their respective component distributions. This approach enhances CapsNets' capacity to learn from intricate, high-dimensional data while retaining their interpretability and hierarchical structure. Our proposed model offers two distinct advantages: (i) its lightweight nature facilitates the application of capsules to more intricate vision tasks, including object detection; (ii) it outperforms baseline approaches in these demanding tasks.

The growing proliferation of customized and pretrained generative models has made it infeasible for a user to be fully cognizant of every model in existence. To address this need, we introduce the task of content-based model search: given a query and a large set of generative models, finding the models that best match the query. As each generative model produces a distribution of images, we formulate the search task as an optimization problem to select the model with the highest probability of generating similar content as the query. We introduce a formulation to approximate this probability given the query from different modalities, e.g., image, sketch, and text. Furthermore, we propose a contrastive learning framework for model retrieval, which learns to adapt features for various query modalities. We demonstrate that our method outperforms several baselines on Generative Model Zoo, a new benchmark we create for the model retrieval task.

In large-scale industrial e-commerce, the efficiency of an online recommendation system is crucial in delivering highly relevant item/content advertising that caters to diverse business scenarios. However, most existing studies focus solely on item advertising, neglecting the significance of content advertising. This oversight results in inconsistencies within the multi-entity structure and unfair retrieval. Furthermore, the challenge of retrieving top-k advertisements from multi-entity advertisements across different domains adds to the complexity. Recent research proves that user-entity behaviors within different domains exhibit characteristics of differentiation and homogeneity. Therefore, the multi-domain matching models typically rely on the hybrid-experts framework with domain-invariant and domain-specific representations. Unfortunately, most approaches primarily focus on optimizing the combination mode of different experts, failing to address the inherent difficulty in optimizing the expert modules themselves. The existence of redundant information across different domains introduces interference and competition among experts, while the distinct learning objectives of each domain lead to varying optimization challenges among experts. To tackle these issues, we propose robust representation learning for the unified online top-k recommendation. Our approach constructs unified modeling in entity space to ensure data fairness. The robust representation learning employs domain adversarial learning and multi-view wasserstein distribution learning to learn robust representations. Moreover, the proposed method balances conflicting objectives through the homoscedastic uncertainty weights and orthogonality constraints. Various experiments validate the effectiveness and rationality of our proposed method, which has been successfully deployed online to serve real business scenarios.

The recently proposed generative flow networks (GFlowNets) are a method of training a policy to sample compositional discrete objects with probabilities proportional to a given reward via a sequence of actions. GFlowNets exploit the sequential nature of the problem, drawing parallels with reinforcement learning (RL). Our work extends the connection between RL and GFlowNets to a general case. We demonstrate how the task of learning a generative flow network can be efficiently redefined as an entropy-regularized RL problem with a specific reward and regularizer structure. Furthermore, we illustrate the practical efficiency of this reformulation by applying standard soft RL algorithms to GFlowNet training across several probabilistic modeling tasks. Contrary to previously reported results, we show that entropic RL approaches can be competitive against established GFlowNet training methods. This perspective opens a direct path for integrating reinforcement learning principles into the realm of generative flow networks.

To address privacy concerns and reduce network latency, there has been a recent trend of compressing cumbersome recommendation models trained on the cloud and deploying compact recommender models to resource-limited devices for real-time recommendation. Existing solutions generally overlook device heterogeneity and user heterogeneity. They either require all devices to share the same compressed model or the devices with the same resource budget to share the same model. However, even users with the same devices may have different preferences. In addition, they assume the available resources (e.g., memory) for the recommender on a device are constant, which is not reflective of reality. In light of device and user heterogeneities as well as dynamic resource constraints, this paper proposes a Personalized Elastic Embedding Learning framework (PEEL) for on-device recommendation, which generates personalized embeddings for devices with various memory budgets in once-for-all manner, efficiently adapting to new or dynamic budgets, and effectively addressing user preference diversity by assigning personalized embeddings for different groups of users. Specifically, it pretrains using user-item interaction instances to generate the global embedding table and cluster users into groups. Then, it refines the embedding tables with local interaction instances within each group. Personalized elastic embedding is generated from the group-wise embedding blocks and their weights that indicate the contribution of each embedding block to the local recommendation performance. PEEL efficiently generates personalized elastic embeddings by selecting embedding blocks with the largest weights, making it adaptable to dynamic memory budgets. Extensive experiments are conducted on two public datasets, and the results show that PEEL yields superior performance on devices with heterogeneous and dynamic memory budgets.

Multimodal models trained on complete modality data often exhibit a substantial decrease in performance when faced with imperfect data containing corruptions or missing modalities. To address this robustness challenge, prior methods have explored various approaches from aspects of augmentation, consistency or uncertainty, but these approaches come with associated drawbacks related to data complexity, representation, and learning, potentially diminishing their overall effectiveness. In response to these challenges, this study introduces a novel approach known as the Redundancy-Adaptive Multimodal Learning (RAML). RAML efficiently harnesses information redundancy across multiple modalities to combat the issues posed by imperfect data while remaining compatible with the complete modality. Specifically, RAML achieves redundancy-lossless information extraction through separate unimodal discriminative tasks and enforces a proper norm constraint on each unimodal feature representation. Furthermore, RAML explicitly enhances multimodal fusion by leveraging fine-grained redundancy among unimodal features to learn correspondences between corrupted and untainted information. Extensive experiments on various benchmark datasets under diverse conditions have consistently demonstrated that RAML outperforms state-of-the-art methods by a significant margin.

Integrated sensing and communications (ISAC) systems have gained significant interest because of their ability to jointly and efficiently access, utilize, and manage the scarce electromagnetic spectrum. The co-existence approach toward ISAC focuses on the receiver processing of overlaid radar and communications signals coming from independent transmitters. A specific ISAC coexistence problem is dual-blind deconvolution (DBD), wherein the transmit signals and channels of both radar and communications are unknown to the receiver. Prior DBD works ignore the evolution of the signal model over time. In this work, we consider a dynamic DBD scenario using a linear state space model (LSSM) such that, apart from the transmit signals and channels of both systems, the LSSM parameters are also unknown. We employ a factor graph representation to model these unknown variables. We avoid the conventional matrix inversion approach to estimate the unknown variables by using an efficient expectation-maximization algorithm, where each iteration employs a Gaussian message passing over the factor graph structure. Numerical experiments demonstrate the accurate estimation of radar and communications channels, including in the presence of noise.

With the ever-increasing execution scale of high performance computing (HPC) applications, vast amounts of data are being produced by scientific research every day. Error-bounded lossy compression has been considered a very promising solution to address the big-data issue for scientific applications because it can significantly reduce the data volume with low time cost meanwhile allowing users to control the compression errors with a specified error bound. The existing error-bounded lossy compressors, however, are all developed based on inflexible designs or compression pipelines, which cannot adapt to diverse compression quality requirements/metrics favored by different application users. In this paper, we propose a novel dynamic quality metric oriented error-bounded lossy compression framework, namely QoZ. The detailed contribution is three-fold. (1) We design a novel highly-parameterized multi-level interpolation-based data predictor, which can significantly improve the overall compression quality with the same compressed size. (2) We design the error-bounded lossy compression framework QoZ based on the adaptive predictor, which can auto-tune the critical parameters and optimize the compression result according to user-specified quality metrics during online compression. (3) We evaluate QoZ carefully by comparing its compression quality with multiple state-of-the-arts on various real-world scientific application datasets. Experiments show that, compared with the second-best lossy compressor, QoZ can achieve up to 70% compression ratio improvement under the same error bound, up to 150% compression ratio improvement under the same PSNR, or up to 270% compression ratio improvement under the same SSIM.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司