亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The uses of Machine Learning (ML) in detection of network attacks have been effective when designed and evaluated in a single organisation. However, it has been very challenging to design an ML-based detection system by utilising heterogeneous network data samples originating from several sources. This is mainly due to privacy concerns and the lack of a universal format of datasets. In this paper, we propose a collaborative federated learning scheme to address these issues. The proposed framework allows multiple organisations to join forces in the design, training, and evaluation of a robust ML-based network intrusion detection system. The threat intelligence scheme utilises two critical aspects for its application; the availability of network data traffic in a common format to allow for the extraction of meaningful patterns across data sources. Secondly, the adoption of a federated learning mechanism to avoid the necessity of sharing sensitive users' information between organisations. As a result, each organisation benefits from other organisations cyber threat intelligence while maintaining the privacy of its data internally. The model is trained locally and only the updated weights are shared with the remaining participants in the federated averaging process. The framework has been designed and evaluated in this paper by using two key datasets in a NetFlow format known as NF-UNSW-NB15-v2 and NF-BoT-IoT-v2. Two other common scenarios are considered in the evaluation process; a centralised training method where the local data samples are shared with other organisations and a localised training method where no threat intelligence is shared. The results demonstrate the efficiency and effectiveness of the proposed framework by designing a universal ML model effectively classifying benign and intrusive traffic originating from multiple organisations without the need for local data exchange.

相關內容

聯(lian)邦學習(Federated Learning)是(shi)一種新興的(de)人(ren)工智能基礎技(ji)術(shu),在(zai) 2016 年由谷(gu)歌(ge)最(zui)先提出,原本用于解決安(an)卓手機終(zhong)端(duan)用戶(hu)在(zai)本地(di)更新模型的(de)問題(ti),其設計目(mu)標是(shi)在(zai)保障(zhang)大數(shu)據交換時的(de)信(xin)息安(an)全、保護(hu)終(zhong)端(duan)數(shu)據和個人(ren)數(shu)據隱私、保證合法合規的(de)前提下,在(zai)多參(can)與方(fang)或多計算(suan)結(jie)點之間開(kai)展高效率的(de)機器學習。其中,聯(lian)邦學習可使用的(de)機器學習算(suan)法不局限于神經網(wang)絡,還包括隨機森(sen)林等重要算(suan)法。聯(lian)邦學習有(you)望(wang)成為下一代人(ren)工智能協同算(suan)法和協作網(wang)絡的(de)基礎。

The Internet of Behaviors (IoB) puts human behavior at the core of engineering intelligent connected systems. IoB links the digital world to human behavior to establish human-driven design, development, and adaptation processes. This paper defines the novel concept by an IoB model based on a collective effort interacting with software engineers, human-computer interaction scientists, social scientists, and cognitive science communities. The model for IoB is created based on an exploratory study that synthesizes state-of-the-art analysis and experts interviews. The architecture of a real industry 4.0 manufacturing infrastructure helps to explain the IoB model and it's application. The conceptual model was used to successfully implement a socio-technical infrastructure for a crowd monitoring and queue management system for the Uffizi Galleries, Florence, Italy. The experiment, which started in the fall of 2016 and was operational in the fall of 2018, used a data-driven approach to feed the system with real-time sensory data. It also incorporated prediction models on visitors' mobility behavior. The system's main objective was to capture human behavior, model it, and build a mechanism that considers changes, adapts in real-time, and continuously learns from repetitive behaviors. In addition to the conceptual model and the real-life evaluation, this paper provides recommendations from experts and gives future directions for IoB to become a significant technological advancement in the coming few years.

State-of-the-art machine learning models are routinely trained on large-scale distributed clusters. Crucially, such systems can be compromised when some of the computing devices exhibit abnormal (Byzantine) behavior and return arbitrary results to the parameter server (PS). This behavior may be attributed to a plethora of reasons, including system failures and orchestrated attacks. Existing work suggests robust aggregation and/or computational redundancy to alleviate the effect of distorted gradients. However, most of these schemes are ineffective when an adversary knows the task assignment and can choose the attacked workers judiciously to induce maximal damage. Our proposed method Aspis assigns gradient computations to worker nodes using a subset-based assignment which allows for multiple consistency checks on the behavior of a worker node. Examination of the calculated gradients and post-processing (clique-finding in an appropriately constructed graph) by the central node allows for efficient detection and subsequent exclusion of adversaries from the training process. We prove the Byzantine resilience and detection guarantees of Aspis under weak and strong attacks and extensively evaluate the system on various large-scale training scenarios. The principal metric for our experiments is the test accuracy, for which we demonstrate a significant improvement of about 30% compared to many state-of-the-art approaches on the CIFAR-10 dataset. The corresponding reduction of the fraction of corrupted gradients ranges from 16% to 99%.

Machine learning (ML) has been pervasively researched nowadays and it has been applied in many aspects of real life. Nevertheless, issues of model and data still accompany the development of ML. For instance, training of traditional ML models is limited to the access of data sets, which are generally proprietary; published ML models may soon be out of date without update of new data and continuous training; malicious data contributors may upload wrongly labeled data that leads to undesirable training results; and the abuse of private data and data leakage also exit. With the utilization of blockchain, an emerging and swiftly developing technology, these problems can be efficiently solved. In this paper, we conduct a survey of the convergence of collaborative ML and blockchain. We investigate different ways of combination of these two technologies, and their fields of application. We also discuss the limitations of current research and their future directions.

It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.

Federated Learning (FL) is a concept first introduced by Google in 2016, in which multiple devices collaboratively learn a machine learning model without sharing their private data under the supervision of a central server. This offers ample opportunities in critical domains such as healthcare, finance etc, where it is risky to share private user information to other organisations or devices. While FL appears to be a promising Machine Learning (ML) technique to keep the local data private, it is also vulnerable to attacks like other ML models. Given the growing interest in the FL domain, this report discusses the opportunities and challenges in federated learning.

Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.

The emerging paradigm of federated learning strives to enable collaborative training of machine learning models on the network edge without centrally aggregating raw data and hence, improving data privacy. This sharply deviates from traditional machine learning and necessitates the design of algorithms robust to various sources of heterogeneity. Specifically, statistical heterogeneity of data across user devices can severely degrade the performance of standard federated averaging for traditional machine learning applications like personalization with deep learning. This paper pro-posesFedPer, a base + personalization layer approach for federated training of deep feedforward neural networks, which can combat the ill-effects of statistical heterogeneity. We demonstrate effectiveness ofFedPerfor non-identical data partitions ofCIFARdatasetsand on a personalized image aesthetics dataset from Flickr.

In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.

Sufficient supervised information is crucial for any machine learning models to boost performance. However, labeling data is expensive and sometimes difficult to obtain. Active learning is an approach to acquire annotations for data from a human oracle by selecting informative samples with a high probability to enhance performance. In recent emerging studies, a generative adversarial network (GAN) has been integrated with active learning to generate good candidates to be presented to the oracle. In this paper, we propose a novel model that is able to obtain labels for data in a cheaper manner without the need to query an oracle. In the model, a novel reward for each sample is devised to measure the degree of uncertainty, which is obtained from a classifier trained with existing labeled data. This reward is used to guide a conditional GAN to generate informative samples with a higher probability for a certain label. With extensive evaluations, we have confirmed the effectiveness of the model, showing that the generated samples are capable of improving the classification performance in popular image classification tasks.

Though quite challenging, leveraging large-scale unlabeled or partially labeled images in a cost-effective way has increasingly attracted interests for its great importance to computer vision. To tackle this problem, many Active Learning (AL) methods have been developed. However, these methods mainly define their sample selection criteria within a single image context, leading to the suboptimal robustness and impractical solution for large-scale object detection. In this paper, aiming to remedy the drawbacks of existing AL methods, we present a principled Self-supervised Sample Mining (SSM) process accounting for the real challenges in object detection. Specifically, our SSM process concentrates on automatically discovering and pseudo-labeling reliable region proposals for enhancing the object detector via the introduced cross image validation, i.e., pasting these proposals into different labeled images to comprehensively measure their values under different image contexts. By resorting to the SSM process, we propose a new AL framework for gradually incorporating unlabeled or partially labeled data into the model learning while minimizing the annotating effort of users. Extensive experiments on two public benchmarks clearly demonstrate our proposed framework can achieve the comparable performance to the state-of-the-art methods with significantly fewer annotations.

北京阿比特科技有限公司