亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent research found that fairness plays a key role in customer satisfaction. Therefore, many manufacturing and services industries have become aware of the need to treat customers fairly. Still, there is a huge lack of models that enable industries to make operational decisions fairly, such as a fair scheduling of the customers' jobs. Our main aim in this research is to provide a unified framework to enable schedulers making fair decisions in repetitive scheduling environments. For doing so, we consider a set of repetitive scheduling problems involving a set of $n$ clients. In each out of $q$ consecutive operational periods (e.g. days), each one of the customers submits a job for processing by an operational system. The scheduler's aim is to provide a schedule for each of the $q$ periods such that the quality of service (QoS) received by each of the clients will meet a certain predefined threshold. The QoS of a client may take several different forms, e.g., the number of days that the customer receives its job later than a given due-date, the number of times the customer receive his preferred time slot for service, or the sum of waiting times for service. We analyze the single machine variant of the problem for several different definitions of QoS, and classify the complexity of the corresponding problems using the theories of classical and parameterized complexity. We also study the price of fairness, i.e., the loss in the system's efficiency that results from the need to provide fair solutions.

相關內容

Recommender systems (RS), serving at the forefront of Human-centered AI, are widely deployed in almost every corner of the web and facilitate the human decision-making process. However, despite their enormous capabilities and potential, RS may also lead to undesired effects on users, items, producers, platforms, or even the society at large, such as compromised user trust due to non-transparency, unfair treatment of different consumers, or producers, privacy concerns due to extensive use of user's private data for personalization, just to name a few. All of these create an urgent need for Trustworthy Recommender Systems (TRS) so as to mitigate or avoid such adverse impacts and risks. In this survey, we will introduce techniques related to trustworthy recommendation, including but not limited to explainable recommendation, fairness in recommendation, privacy-aware recommendation, robustness in recommendation, user-controllable recommendation, as well as the relationship between these different perspectives in terms of trustworthy recommendation. Through this survey, we hope to deliver readers with a comprehensive view of the research area and raise attention to the community about the importance, existing research achievements, and future research directions on trustworthy recommendation.

Human values play a vital role as an analytical tool in social sciences, enabling the study of diverse dimensions within society as a whole and among individual communities. This paper addresses the limitations of traditional survey-based studies of human values by proposing a computational application of Schwartz's values framework to Reddit, a platform organized into distinct online communities. After ensuring the reliability of automated value extraction tools for Reddit content, we automatically annotate six million posts across 10,000 subreddits with Schwartz values. Our analysis unveils both previously recorded and novel insights into the values prevalent within various online communities. For instance, when examining subreddits with differing opinions on controversial topics, we discover higher universalism values in the Vegan subreddit compared to Carnivores. Additionally, our study of geographically specific subreddits highlights the correlation between traditional values and conservative U.S. states.

As intelligent robots like autonomous vehicles become increasingly deployed in the presence of people, the extent to which these systems should leverage model-based game-theoretic planners versus data-driven policies for safe, interaction-aware motion planning remains an open question. Existing dynamic game formulations assume all agents are task-driven and behave optimally. However, in reality, humans tend to deviate from the decisions prescribed by these models, and their behavior is better approximated under a noisy-rational paradigm. In this work, we investigate a principled methodology to blend a data-driven reference policy with an optimization-based game-theoretic policy. We formulate KLGame, a type of non-cooperative dynamic game with Kullback-Leibler (KL) regularization with respect to a general, stochastic, and possibly multi-modal reference policy. Our method incorporates, for each decision maker, a tunable parameter that permits modulation between task-driven and data-driven behaviors. We propose an efficient algorithm for computing multimodal approximate feedback Nash equilibrium strategies of KLGame in real time. Through a series of simulated and real-world autonomous driving scenarios, we demonstrate that KLGame policies can more effectively incorporate guidance from the reference policy and account for noisily-rational human behaviors versus non-regularized baselines.

Large Language Models (LLMs) have shown powerful performance and development prospects and are widely deployed in the real world. However, LLMs can capture social biases from unprocessed training data and propagate the biases to downstream tasks. Unfair LLM systems have undesirable social impacts and potential harms. In this paper, we provide a comprehensive review of related research on fairness in LLMs. Considering the influence of parameter magnitude and training paradigm on research strategy, we divide existing fairness research into oriented to medium-sized LLMs under pre-training and fine-tuning paradigms and oriented to large-sized LLMs under prompting paradigms. First, for medium-sized LLMs, we introduce evaluation metrics and debiasing methods from the perspectives of intrinsic bias and extrinsic bias, respectively. Then, for large-sized LLMs, we introduce recent fairness research, including fairness evaluation, reasons for bias, and debiasing methods. Finally, we discuss and provide insight on the challenges and future directions for the development of fairness in LLMs.

Some Magic Tricks (MT), such as many kinds of Card Magic (CM), consisting of human computational or logical actions. How to ensure the logical correctness of these MTs? In this paper, the Model Checking (MC) technique is employed to study a typical CM via a case study. First, computational operations of a CM called shousuigongcishi can be described by a Magic Algorithm (MAR). Second, the logical correctness is portrayed by a temporal logic formula. On the basis of it, this MT logical correctness problem is reduced to the model checking problem. As a result, the Magic Trick Model Checking (MTMC) technique aims to verify whether a designed MT meets its architect's anticipation and requirements, or not, in terms of logic and computations.

Context and motivation: Requirements engineering of complex IT systems needs to manage the many, and often vague and conflicting, organisational rules that exist in the context of a modern enterprise. At the same time, IT systems affect the organisation, essentially setting new rules on how the organisation should work. Question/problem: Gathering requirements for an IT system involves understanding the complex rules that govern an organisation. The research question is: How can the holistic properties of organisational rules be conceptualised? Principal ideas/results: This paper introduces the concept of organisational rule systems that may be used to describe complex organisational rules. The concept and its components are presented as a conceptual framework, which in turn is condensed into a conceptual framework diagram. The framework is grounded in a critical literature review. Contribution: The conceptual framework will, as a first step of a wider research agenda, help requirements engineers understand the influence of organisational rules.

We consider variants of the clustered planarity problem for level-planar drawings. So far, only convex clusters have been studied in this setting. We introduce two new variants that both insist on a level-planar drawing of the input graph but relax the requirements on the shape of the clusters. In unrestricted Clustered Level Planarity (uCLP) we only require that they are bounded by simple closed curves that enclose exactly the vertices of the cluster and cross each edge of the graph at most once. The problem y-monotone Clustered Level Planarity (y-CLP) requires that additionally it must be possible to augment each cluster with edges that do not cross the cluster boundaries so that it becomes connected while the graph remains level-planar, thereby mimicking a classic characterization of clustered planarity in the level-planar setting. We give a polynomial-time algorithm for uCLP if the input graph is biconnected and has a single source. By contrast, we show that y-CLP is hard under the same restrictions and it remains NP-hard even if the number of levels is bounded by a constant and there is only a single non-trivial cluster.

Social commerce platforms are emerging businesses where producers sell products through re-sellers who advertise the products to other customers in their social network. Due to the increasing popularity of this business model, thousands of small producers and re-sellers are starting to depend on these platforms for their livelihood; thus, it is important to provide fair earning opportunities to them. The enormous product space in such platforms prohibits manual search, and motivates the need for recommendation algorithms to effectively allocate product exposure and, consequently, earning opportunities. In this work, we focus on the fairness of such allocations in social commerce platforms and formulate the problem of assigning products to re-sellers as a fair division problem with indivisible items under two-sided cardinality constraints, wherein each product must be given to at least a certain number of re-sellers and each re-seller must get a certain number of products. Our work systematically explores various well-studied benchmarks of fairness -- including Nash social welfare, envy-freeness up to one item (EF1), and equitability up to one item (EQ1) -- from both theoretical and experimental perspectives. We find that the existential and computational guarantees of these concepts known from the unconstrained setting do not extend to our constrained model. To address this limitation, we develop a mixed-integer linear program and other scalable heuristics that provide near-optimal approximation of Nash social welfare in simulated and real social commerce datasets. Overall, our work takes the first step towards achieving provable fairness alongside reasonable revenue guarantees on social commerce platforms.

With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.

Graphical causal inference as pioneered by Judea Pearl arose from research on artificial intelligence (AI), and for a long time had little connection to the field of machine learning. This article discusses where links have been and should be established, introducing key concepts along the way. It argues that the hard open problems of machine learning and AI are intrinsically related to causality, and explains how the field is beginning to understand them.

北京阿比特科技有限公司