亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Changing an attribute of a text without changing the content usually requires to first disentangle the text into irrelevant attributes and content representations. After that, in the inference phase, the representation of one attribute is tuned to a different value, expecting that the corresponding attribute of the text can also be changed accordingly. The usual way of disentanglement is to add some constraints on the latent space of an encoder-decoder architecture, including adversarial-based constraints and mutual-information-based constraints. However, the previous semi-supervised processes of attribute change are usually not enough to guarantee the success of attribute change and content preservation. In this paper, we propose a novel approach to achieve a robust control of attributes while enhancing content preservation. In this approach, we use a semi-supervised contrastive learning method to encourage the disentanglement of attributes in latent spaces. Differently from previous works, we re-disentangle the reconstructed sentence and compare the re-disentangled latent space with the original latent space, which makes a closed-loop disentanglement process. This also helps content preservation. In addition, the contrastive learning method is also able to replace the role of minimizing mutual information and adversarial training in the disentanglement process, which alleviates the computation cost. We conducted experiments on three text datasets, including the Yelp Service review dataset, the Amazon Product review dataset, and the GoEmotions dataset. The experimental results show the effectiveness of our model.

相關內容

Common crowdsourcing systems average estimates of a latent quantity of interest provided by many crowdworkers to produce a group estimate. We develop a new approach -- just-predict-others -- that leverages self-supervised learning and a novel aggregation scheme. This approach adapts weights assigned to crowdworkers based on estimates they provided for previous quantities. When skills vary across crowdworkers or their estimates correlate, the weighted sum offers a more accurate group estimate than the average. Existing algorithms such as expectation maximization can, at least in principle, produce similarly accurate group estimates. However, their computational requirements become onerous when complex models, such as neural networks, are required to express relationships among crowdworkers. Just-predict-others accommodates such complexity as well as many other practical challenges. We analyze the efficacy of just-predict-others through theoretical and computational studies. Among other things, we establish asymptotic optimality as the number of engagements per crowdworker grows.

Bayesian inference with empirical likelihood faces a challenge as the posterior domain is a proper subset of the original parameter space due to the convex hull constraint. We propose a regularized exponentially tilted empirical likelihood to address this issue. Our method removes the convex hull constraint using a novel regularization technique, incorporating a continuous exponential family distribution to satisfy a Kullback--Leibler divergence criterion. The regularization arises as a limiting procedure where pseudo-data are added to the formulation of exponentially tilted empirical likelihood in a structured fashion. We show that this regularized exponentially tilted empirical likelihood retains certain desirable asymptotic properties of (exponentially tilted) empirical likelihood and has improved finite sample performance. Simulation and data analysis demonstrate that the proposed method provides a suitable pseudo-likelihood for Bayesian inference. The implementation of our method is available as the R package retel. Supplementary materials for this article are available online.

Given an image and a natural language expression as input, the goal of referring image segmentation is to segment the foreground masks of the entities referred by the expression. Existing methods mainly focus on interactive learning between vision and language to enhance the multi-modal representations for global context reasoning. However, predicting directly in pixel-level space can lead to collapsed positioning and poor segmentation results. Its main challenge lies in how to explicitly model entity localization, especially for non-salient entities. In this paper, we tackle this problem by executing a Collaborative Position Reasoning Network (CPRN) via the proposed novel Row-and-Column interactive (RoCo) and Guided Holistic interactive (Holi) modules. Specifically, RoCo aggregates the visual features into the row- and column-wise features corresponding two directional axes respectively. It offers a fine-grained matching behavior that perceives the associations between the linguistic features and two decoupled visual features to perform position reasoning over a hierarchical space. Holi integrates features of the two modalities by a cross-modal attention mechanism, which suppresses the irrelevant redundancy under the guide of positioning information from RoCo. Thus, with the incorporation of RoCo and Holi modules, CPRN captures the visual details of position reasoning so that the model can achieve more accurate segmentation. To our knowledge, this is the first work that explicitly focuses on position reasoning modeling. We also validate the proposed method on three evaluation datasets. It consistently outperforms existing state-of-the-art methods.

Recent advancements in technologies, such as the 'deepfake' technique, have paved the way for the generation of various media forgeries. In response to the potential hazards of these media forgeries, many researchers engage in exploring detection methods, increasing the demand for high-quality media forgery datasets. Despite this, existing datasets have certain limitations. Firstly, most of datasets focus on the manipulation of visual modality and usually lack diversity, as only a few forgery approaches are considered. Secondly, the quality of media is often inadequate in clarity and naturalness. Meanwhile, the size of the dataset is also limited. Thirdly, while many real-world forgeries are driven by identity, the identity information of the subject in media is frequently neglected. For detection, identity information could be an essential clue to boost accuracy. Moreover, official media concerning certain identities on the Internet can serve as prior knowledge, aiding both the audience and forgery detectors in determining the true identity. Therefore, we propose an identity-driven multimedia forgery dataset, IDForge, which contains 249,138 video shots. All video shots are sourced from 324 wild videos collected of 54 celebrities from the Internet. The fake video shots involve 9 types of manipulation across visual, audio and textual modalities. Additionally, IDForge provides extra 214,438 real video shots as a reference set for the 54 celebrities. Correspondingly, we design an effective multimedia detection network, Reference-assisted Multimodal Forgery Detection Network (R-MFDN). Through extensive experiments on the proposed dataset, we demonstrate the effectiveness of R-MFDN on the multimedia detection task.

Long text generation, such as novel writing or discourse-level translation with extremely long contexts, presents significant challenges to current language models. Existing methods mainly focus on extending the model's context window through strategies like length extrapolation. However, these approaches demand substantial hardware resources during the training and/or inference phases. Our proposed method, Temp-Lora, introduces an alternative concept. Instead of relying on the KV cache to store all context information, Temp-Lora embeds this information directly into the model's parameters. In the process of long text generation, we use a temporary Lora module, progressively trained with text generated previously. This approach not only efficiently preserves contextual knowledge but also prevents any permanent alteration to the model's parameters given that the module is discarded post-generation. Extensive experiments on the PG19 language modeling benchmark and the GuoFeng discourse-level translation benchmark validate the effectiveness of Temp-Lora. Our results show that: 1) Temp-Lora substantially enhances generation quality for long texts, as indicated by a 13.2% decrease in perplexity on a subset of PG19, and a 29.6% decrease in perplexity along with a 53.2% increase in BLEU score on GuoFeng, 2) Temp-Lora is compatible with and enhances most existing long text generation methods, and 3) Temp-Lora can greatly reduce computational costs by shortening the context window. While ensuring a slight improvement in generation quality (a decrease of 3.8% in PPL), it enables a reduction of 70.5% in the FLOPs required for inference and a 51.5% decrease in latency.

Readers find text difficult to consume for many reasons. Summarization can address some of these difficulties, but introduce others, such as omitting, misrepresenting, or hallucinating information, which can be hard for a reader to notice. One approach to addressing this problem is to instead modify how the original text is rendered to make important information more salient. We introduce Grammar-Preserving Text Saliency Modulation (GP-TSM), a text rendering method with a novel means of identifying what to de-emphasize. Specifically, GP-TSM uses a recursive sentence compression method to identify successive levels of detail beyond the core meaning of a passage, which are de-emphasized by rendering words in successively lighter but still legible gray text. In a lab study (n=18), participants preferred GP-TSM over pre-existing word-level text rendering methods and were able to answer GRE reading comprehension questions more efficiently.

Particle flow filters solve Bayesian inference problems by smoothly transforming a set of particles into samples from the posterior distribution. Particles move in state space under the flow of an McKean-Vlasov-Ito process. This work introduces the Variational Fokker-Planck (VFP) framework for data assimilation, a general approach that includes previously known particle flow filters as special cases. The McKean-Vlasov-Ito process that transforms particles is defined via an optimal drift that depends on the selected diffusion term. It is established that the underlying probability density - sampled by the ensemble of particles - converges to the Bayesian posterior probability density. For a finite number of particles the optimal drift contains a regularization term that nudges particles toward becoming independent random variables. Based on this analysis, we derive computationally-feasible approximate regularization approaches that penalize the mutual information between pairs of particles, and avoid particle collapse. Moreover, the diffusion plays a role akin to a particle rejuvenation approach that aims to alleviate particle collapse. The VFP framework is very flexible. Different assumptions on prior and intermediate probability distributions can be used to implement the optimal drift, and localization and covariance shrinkage can be applied to alleviate the curse of dimensionality. A robust implicit-explicit method is discussed for the efficient integration of stiff McKean-Vlasov-Ito processes. The effectiveness of the VFP framework is demonstrated on three progressively more challenging test problems, namely the Lorenz '63, Lorenz '96 and the quasi-geostrophic equations.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.

北京阿比特科技有限公司