亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Distributed architectures are used to improve performance and reliability of various systems. Examples include drone swarms and load-balancing servers. An important capability of a distributed architecture is the ability to reach consensus among all its nodes. Several consensus algorithms have been proposed, and many of these algorithms come with intricate proofs of correctness, that are not mechanically checked. In the controls community, algorithms often achieve consensus asymptotically, e.g., for problems such as the design of human control systems, or the analysis of natural systems like bird flocking. This is in contrast to exact consensus algorithm such as Paxos, which have received much more recent attention in the formal methods community. This paper presents the first formal proof of an asymptotic consensus algorithm, and addresses various challenges in its formalization. Using the Coq proof assistant, we verify the correctness of a widely used consensus algorithm in the distributed controls community, the Weighted-Mean Subsequence Reduced (W-MSR) algorithm. We formalize the necessary and sufficient conditions required to achieve resilient asymptotic consensus under the assumed attacker model. During the formalization, we clarify several imprecisions in the paper proof, including an imprecision on quantifiers in the main theorem.

相關內容

The paper presents a numerical method for simulating flow and mechanics in fractured rock. The governing equations that couple the effects in the rock mass and in the fractures are obtained using the discrete fracture-matrix approach. The fracture flow is driven by the cubic law, and the contact conditions prevent fractures from self-penetration. A stable finite element discretization is proposed for the displacement-pressure-flux formulation. The resulting nonlinear algebraic system of equations and inequalities is decoupled using a robust iterative splitting into the linearized flow subproblem, and the quadratic programming problem for the mechanical part. The non-penetration conditions are solved by means of dualization and an optimal quadratic programming algorithm. The capability of the numerical scheme is demonstrated on a benchmark problem for tunnel excavation with hundreds of fractures in 3D. The paper's novelty consists in a combination of three crucial ingredients: (i) application of discrete fracture-matrix approach to poroelasticity, (ii) robust iterative splitting of resulting nonlinear algebraic system working for real-world 3D problems, and (iii) efficient solution of its mechanical quadratic programming part with a large number of fractures in mutual contact by means of own solvers implemented into an in-house software library.

We tackle covariance estimation in low-sample scenarios, employing a structured covariance matrix with shrinkage methods. These involve convexly combining a low-bias/high-variance empirical estimate with a biased regularization estimator, striking a bias-variance trade-off. Literature provides optimal settings of the regularization amount through risk minimization between the true covariance and its shrunk counterpart. Such estimators were derived for zero-mean statistics with i.i.d. diagonal regularization matrices accounting for the average sample variance solely. We extend these results to regularization matrices accounting for the sample variances both for centered and non-centered samples. In the latter case, the empirical estimate of the true mean is incorporated into our shrinkage estimators. Introducing confidence weights into the statistics also enhance estimator robustness against outliers. We compare our estimators to other shrinkage methods both on numerical simulations and on real data to solve a detection problem in astronomy.

Continuous normalizing flows (CNFs) are an attractive generative modeling technique, but they have been held back by limitations in their simulation-based maximum likelihood training. We introduce the generalized conditional flow matching (CFM) technique, a family of simulation-free training objectives for CNFs. CFM features a stable regression objective like that used to train the stochastic flow in diffusion models but enjoys the efficient inference of deterministic flow models. In contrast to both diffusion models and prior CNF training algorithms, CFM does not require the source distribution to be Gaussian or require evaluation of its density. A variant of our objective is optimal transport CFM (OT-CFM), which creates simpler flows that are more stable to train and lead to faster inference, as evaluated in our experiments. Furthermore, we show that when the true OT plan is available, our OT-CFM method approximates dynamic OT. Training CNFs with CFM improves results on a variety of conditional and unconditional generation tasks, such as inferring single cell dynamics, unsupervised image translation, and Schr\"odinger bridge inference.

We consider the design of a new class of passive iFIR controllers given by the parallel action of an integrator and a finite impulse response filter. iFIRs are more expressive than PID controllers but retain their features and simplicity. The paper provides a model-free data-driven design for passive iFIR controllers based on virtual reference feedback tuning. Passivity is enforced through constrained optimization (three different formulations are discussed). The proposed design does not rely on large datasets or accurate plant models.

In decision-making, maxitive functions are used for worst-case and best-case evaluations. Maxitivity gives rise to a rich structure that is well-studied in the context of the pointwise order. In this article, we investigate maxitivity with respect to general preorders and provide a representation theorem for such functionals. The results are illustrated for different stochastic orders in the literature, including the usual stochastic order, the increasing convex/concave order, and the dispersive order.

Change-point detection, detecting an abrupt change in the data distribution from sequential data, is a fundamental problem in statistics and machine learning. CUSUM is a popular statistical method for online change-point detection due to its efficiency from recursive computation and constant memory requirement, and it enjoys statistical optimality. CUSUM requires knowing the precise pre- and post-change distribution. However, post-change distribution is usually unknown a priori since it represents anomaly and novelty. Classic CUSUM can perform poorly when there is a model mismatch with actual data. While likelihood ratio-based methods encounter challenges facing high dimensional data, neural networks have become an emerging tool for change-point detection with computational efficiency and scalability. In this paper, we introduce a neural network CUSUM (NN-CUSUM) for online change-point detection. We also present a general theoretical condition when the trained neural networks can perform change-point detection and what losses can achieve our goal. We further extend our analysis by combining it with the Neural Tangent Kernel theory to establish learning guarantees for the standard performance metrics, including the average run length (ARL) and expected detection delay (EDD). The strong performance of NN-CUSUM is demonstrated in detecting change-point in high-dimensional data using both synthetic and real-world data.

Network diffusion models are used to study things like disease transmission, information spread, and technology adoption. However, small amounts of mismeasurement are extremely likely in the networks constructed to operationalize these models. We show that estimates of diffusions are highly non-robust to this measurement error. First, we show that even when measurement error is vanishingly small, such that the share of missed links is close to zero, forecasts about the extent of diffusion will greatly underestimate the truth. Second, a small mismeasurement in the identity of the initial seed generates a large shift in the locations of expected diffusion path. We show that both of these results still hold when the vanishing measurement error is only local in nature. Such non-robustness in forecasting exists even under conditions where the basic reproductive number is consistently estimable. Possible solutions, such as estimating the measurement error or implementing widespread detection efforts, still face difficulties because the number of missed links are so small. Finally, we conduct Monte Carlo simulations on simulated networks, and real networks from three settings: travel data from the COVID-19 pandemic in the western US, a mobile phone marketing campaign in rural India, and in an insurance experiment in China.

To date, most methods for simulating conditioned diffusions are limited to the Euclidean setting. The conditioned process can be constructed using a change of measure known as Doob's $h$-transform. The specific type of conditioning depends on a function $h$ which is typically unknown in closed form. To resolve this, we extend the notion of guided processes to a manifold $M$, where one replaces $h$ by a function based on the heat kernel on $M$. We consider the case of a Brownian motion with drift, constructed using the frame bundle of $M$, conditioned to hit a point $x_T$ at time $T$. We prove equivalence of the laws of the conditioned process and the guided process with a tractable Radon-Nikodym derivative. Subsequently, we show how one can obtain guided processes on any manifold $N$ that is diffeomorphic to $M$ without assuming knowledge of the heat kernel on $N$. We illustrate our results with numerical simulations and an example of parameter estimation where a diffusion process on the torus is observed discretely in time.

Distributed control increases system scalability, flexibility, and redundancy. Foundational to such decentralisation is consensus formation, by which decision-making and coordination are achieved. However, decentralised multi-agent systems are inherently vulnerable to disruption. To develop a resilient consensus approach, inspiration is taken from the study of social systems and their dynamics; specifically, the Deffuant Model. A dynamic algorithm is presented enabling efficient consensus to be reached with an unknown number of disruptors present within a multi-agent system. By inverting typical social tolerance, agents filter out extremist non-standard opinions that would drive them away from consensus. This approach allows distributed systems to deal with unknown disruptions, without knowledge of the network topology or the numbers and behaviours of the disruptors. A disruptor-agnostic algorithm is particularly suitable to real-world applications where this information is typically unknown. Faster and tighter convergence can be achieved across a range of scenarios with the social dynamics inspired algorithm, compared with standard Mean-Subsequence-Reduced-type methods.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

北京阿比特科技有限公司