亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the advancement of AIGC, video frame interpolation (VFI) has become a crucial component in existing video generation frameworks, attracting widespread research interest. For the VFI task, the motion estimation between neighboring frames plays a crucial role in avoiding motion ambiguity. However, existing VFI methods always struggle to accurately predict the motion information between consecutive frames, and this imprecise estimation leads to blurred and visually incoherent interpolated frames. In this paper, we propose a novel diffusion framework, motion-aware latent diffusion models (MADiff), which is specifically designed for the VFI task. By incorporating motion priors between the conditional neighboring frames with the target interpolated frame predicted throughout the diffusion sampling procedure, MADiff progressively refines the intermediate outcomes, culminating in generating both visually smooth and realistic results. Extensive experiments conducted on benchmark datasets demonstrate that our method achieves state-of-the-art performance significantly outperforming existing approaches, especially under challenging scenarios involving dynamic textures with complex motion.

相關內容

Recently, video diffusion models (VDMs) have garnered significant attention due to their notable advancements in generating coherent and realistic video content. However, processing multiple frame features concurrently, coupled with the considerable model size, results in high latency and extensive memory consumption, hindering their broader application. Post-training quantization (PTQ) is an effective technique to reduce memory footprint and improve computational efficiency. Unlike image diffusion, we observe that the temporal features, which are integrated into all frame features, exhibit pronounced skewness. Furthermore, we investigate significant inter-channel disparities and asymmetries in the activation of video diffusion models, resulting in low coverage of quantization levels by individual channels and increasing the challenge of quantization. To address these issues, we introduce the first PTQ strategy tailored for video diffusion models, dubbed QVD. Specifically, we propose the High Temporal Discriminability Quantization (HTDQ) method, designed for temporal features, which retains the high discriminability of quantized features, providing precise temporal guidance for all video frames. In addition, we present the Scattered Channel Range Integration (SCRI) method which aims to improve the coverage of quantization levels across individual channels. Experimental validations across various models, datasets, and bit-width settings demonstrate the effectiveness of our QVD in terms of diverse metrics. In particular, we achieve near-lossless performance degradation on W8A8, outperforming the current methods by 205.12 in FVD.

Motions in a video primarily consist of camera motion, induced by camera movement, and object motion, resulting from object movement. Accurate control of both camera and object motion is essential for video generation. However, existing works either mainly focus on one type of motion or do not clearly distinguish between the two, limiting their control capabilities and diversity. Therefore, this paper presents MotionCtrl, a unified and flexible motion controller for video generation designed to effectively and independently control camera and object motion. The architecture and training strategy of MotionCtrl are carefully devised, taking into account the inherent properties of camera motion, object motion, and imperfect training data. Compared to previous methods, MotionCtrl offers three main advantages: 1) It effectively and independently controls camera motion and object motion, enabling more fine-grained motion control and facilitating flexible and diverse combinations of both types of motion. 2) Its motion conditions are determined by camera poses and trajectories, which are appearance-free and minimally impact the appearance or shape of objects in generated videos. 3) It is a relatively generalizable model that can adapt to a wide array of camera poses and trajectories once trained. Extensive qualitative and quantitative experiments have been conducted to demonstrate the superiority of MotionCtrl over existing methods. Project Page: //wzhouxiff.github.io/projects/MotionCtrl/

Recent advancements in large-scale models have showcased remarkable generalization capabilities in various tasks. However, integrating multimodal processing into these models presents a significant challenge, as it often comes with a high computational burden. To address this challenge, we introduce a new parameter-efficient multimodal tuning strategy for large models in this paper, referred to as Multimodal Infusion Tuning (MiT). MiT leverages decoupled self-attention mechanisms within large language models to effectively integrate information from diverse modalities such as images and acoustics. In MiT, we also design a novel adaptive rescaling strategy at the attention head level, which optimizes the representation of infused multimodal features. Notably, all foundation models are kept frozen during the tuning process to reduce the computational burden and only 2.5\% parameters are tunable. We conduct experiments across a range of multimodal tasks, including image-related tasks like referring segmentation and non-image tasks such as sentiment analysis. Our results showcase that MiT achieves state-of-the-art performance in multimodal understanding while significantly reducing computational overhead(10\% of previous methods). Moreover, our tuned model exhibits robust reasoning abilities even in complex scenarios.

Temporal grounding, also known as video moment retrieval, aims at locating video segments corresponding to a given query sentence. The compositional nature of natural language enables the localization beyond predefined events, posing a certain challenge to the compositional generalizability of existing methods. Recent studies establish the correspondence between videos and queries through a decompose-reconstruct manner to achieve compositional generalization. However, they only consider dominant primitives and build negative queries through random sampling and recombination, resulting in semantically implausible negatives that hinder the models from learning rational compositions. In addition, recent DETR-based methods still underperform in compositional temporal grounding, showing irrational saliency responses when given negative queries that have subtle differences from positive queries. To address these limitations, we first propose a large language model-driven method for negative query construction, utilizing GPT-3.5-Turbo to generate semantically plausible hard negative queries. Subsequently, we introduce a coarse-to-fine saliency ranking strategy, which encourages the model to learn the multi-granularity semantic relationships between videos and hierarchical negative queries to boost compositional generalization. Extensive experiments on two challenging benchmarks validate the effectiveness and generalizability of our proposed method. Our code is available at //github.com/zxccade/SHINE.

In recent years, graph contrastive learning (GCL) has received increasing attention in recommender systems due to its effectiveness in reducing bias caused by data sparsity. However, most existing GCL models rely on heuristic approaches and usually assume entity independence when constructing contrastive views. We argue that these methods struggle to strike a balance between semantic invariance and view hardness across the dynamic training process, both of which are critical factors in graph contrastive learning. To address the above issues, we propose a novel GCL-based recommendation framework RGCL, which effectively maintains the semantic invariance of contrastive pairs and dynamically adapts as the model capability evolves through the training process. Specifically, RGCL first introduces decision boundary-aware adversarial perturbations to constrain the exploration space of contrastive augmented views, avoiding the decrease of task-specific information. Furthermore, to incorporate global user-user and item-item collaboration relationships for guiding on the generation of hard contrastive views, we propose an adversarial-contrastive learning objective to construct a relation-aware view-generator. Besides, considering that unsupervised GCL could potentially narrower margins between data points and the decision boundary, resulting in decreased model robustness, we introduce the adversarial examples based on maximum perturbations to achieve margin maximization. We also provide theoretical analyses on the effectiveness of our designs. Through extensive experiments on five public datasets, we demonstrate the superiority of RGCL compared against twelve baseline models.

In the rapidly evolving field of multimedia services, video streaming has become increasingly prevalent, demanding innovative solutions to enhance user experience and system efficiency. This paper introduces a novel approach that integrates user digital twins-a dynamic digital representation of a user's preferences and behaviors-with traditional video streaming systems. We explore the potential of this integration to dynamically adjust video preferences and optimize transcoding processes according to real-time data. The methodology leverages advanced machine learning algorithms to continuously update the user's digital twin, which in turn informs the transcoding service to adapt video parameters for optimal quality and minimal buffering. Experimental results show that our approach not only improves the personalization of content delivery but also significantly enhances the overall efficiency of video streaming services by reducing bandwidth usage and improving video playback quality. The implications of such advancements suggest a shift towards more adaptive, user-centric multimedia services, potentially transforming how video content is consumed and delivered.

The referring video object segmentation task (RVOS) involves segmentation of a text-referred object instance in the frames of a given video. Due to the complex nature of this multimodal task, which combines text reasoning, video understanding, instance segmentation and tracking, existing approaches typically rely on sophisticated pipelines in order to tackle it. In this paper, we propose a simple Transformer-based approach to RVOS. Our framework, termed Multimodal Tracking Transformer (MTTR), models the RVOS task as a sequence prediction problem. Following recent advancements in computer vision and natural language processing, MTTR is based on the realization that video and text can both be processed together effectively and elegantly by a single multimodal Transformer model. MTTR is end-to-end trainable, free of text-related inductive bias components and requires no additional mask-refinement post-processing steps. As such, it simplifies the RVOS pipeline considerably compared to existing methods. Evaluation on standard benchmarks reveals that MTTR significantly outperforms previous art across multiple metrics. In particular, MTTR shows impressive +5.7 and +5.0 mAP gains on the A2D-Sentences and JHMDB-Sentences datasets respectively, while processing 76 frames per second. In addition, we report strong results on the public validation set of Refer-YouTube-VOS, a more challenging RVOS dataset that has yet to receive the attention of researchers. The code to reproduce our experiments is available at //github.com/mttr2021/MTTR

Message passing Graph Neural Networks (GNNs) provide a powerful modeling framework for relational data. However, the expressive power of existing GNNs is upper-bounded by the 1-Weisfeiler-Lehman (1-WL) graph isomorphism test, which means GNNs that are not able to predict node clustering coefficients and shortest path distances, and cannot differentiate between different d-regular graphs. Here we develop a class of message passing GNNs, named Identity-aware Graph Neural Networks (ID-GNNs), with greater expressive power than the 1-WL test. ID-GNN offers a minimal but powerful solution to limitations of existing GNNs. ID-GNN extends existing GNN architectures by inductively considering nodes' identities during message passing. To embed a given node, ID-GNN first extracts the ego network centered at the node, then conducts rounds of heterogeneous message passing, where different sets of parameters are applied to the center node than to other surrounding nodes in the ego network. We further propose a simplified but faster version of ID-GNN that injects node identity information as augmented node features. Altogether, both versions of ID-GNN represent general extensions of message passing GNNs, where experiments show that transforming existing GNNs to ID-GNNs yields on average 40% accuracy improvement on challenging node, edge, and graph property prediction tasks; 3% accuracy improvement on node and graph classification benchmarks; and 15% ROC AUC improvement on real-world link prediction tasks. Additionally, ID-GNNs demonstrate improved or comparable performance over other task-specific graph networks.

Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.

Knowledge graphs capture structured information and relations between a set of entities or items. As such they represent an attractive source of information that could help improve recommender systems. However existing approaches in this domain rely on manual feature engineering and do not allow for end-to-end training. Here we propose knowledge-aware graph neural networks with label smoothness regularization to provide better recommendations. Conceptually, our approach computes user-specific item embeddings by first applying a trainable function that identifies important knowledge graph relationships for a given user. This way we transform the knowledge graph into a user-specific weighted graph and then applies a graph neural network to compute personalized item embeddings. To provide better inductive bias, we use label smoothness, which assumes that adjacent items in the knowledge graph are likely to have similar user relevance labels/scores. Label smoothness provides regularization over edge weights and we prove that it is equivalent to a label propagation scheme on a graph. Finally, we combine knowledge-aware graph neural networks and label smoothness and present the unified model. Experiment results show that our method outperforms strong baselines in four datasets. It also achieves strong performance in the scenario where user-item interactions are sparse.

北京阿比特科技有限公司