亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, a deep learning method for solving an improved one-dimensional Poisson-Nernst-Planck ion channel (PNPic) model, called the PNPic deep learning solver, is presented. In particular, it combines a novel local neural network scheme with an effective PNPic finite element solver. Since the input data of the neural network scheme only involves a small local patch of coarse grid solutions, which the finite element solver can quickly produce, the PNPic deep learning solver can be trained much faster than any corresponding conventional global neural network solvers. After properly trained, it can output a predicted PNPic solution in a much higher degree of accuracy than the low cost coarse grid solutions and can reflect different perturbation cases on the parameters, ion channel subregions, and interface and boundary values, etc. Consequently, the PNPic deep learning solver can generate a numerical solution with high accuracy for a family of PNPic models. As an initial study, two types of numerical tests were done by perturbing one and two parameters of the PNPic model, respectively, as well as the tests done by using a few perturbed interface positions of the model as training samples. These tests demonstrate that the PNPic deep learning solver can generate highly accurate PNPic numerical solutions.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Advancements in high-throughput biomedical applications necessitate real-time, large field-of-view (FOV) imaging capabilities. Conventional lens-free imaging (LFI) systems, while addressing the limitations of physical lenses, have been constrained by dynamic, hard-to-model optical fields, resulting in a limited one-shot FOV of approximately 20 $mm^2$. This restriction has been a major bottleneck in applications like live-cell imaging and automation of microfluidic systems for biomedical research. Here, we present a deep-learning(DL)-based imaging framework -- GenLFI -- leveraging generative artificial intelligence (AI) for holographic image reconstruction. We demonstrate that GenLFI can achieve a real-time FOV over 550 $mm^2$, surpassing the current LFI system by more than 20-fold, and even larger than the world's largest confocal microscope by 1.76 times. The resolution is at the sub-pixel level of 5.52 $\mu m$, without the need for a shifting light source. The unsupervised learning-based reconstruction does not require optical field modeling, making imaging dynamic 3D samples (e.g., droplet-based microfluidics and 3D cell models) in complex optical fields possible. This GenLFI framework unlocks the potential of LFI systems, offering a robust tool to tackle new frontiers in high-throughput biomedical applications such as drug discovery.

We consider end-to-end learning approaches for inverse problems of gravimetry. Due to ill-posedness of the inverse gravimetry, the reliability of learning approaches is questionable. To deal with this problem, we propose the strategy of learning on the correct class. The well-posedness theorems are employed when designing the neural-network architecture and constructing the training set. Given the density-contrast function as a priori information, the domain of mass can be uniquely determined under certain constrains, and the domain inverse problem is a correct class of the inverse gravimetry. Under this correct class, we design the neural network for learning by mimicking the level-set formulation for the inverse gravimetry. Numerical examples illustrate that the method is able to recover mass models with non-constant density contrast.

High-performing out-of-distribution (OOD) detection, both anomaly and novel class, is an important prerequisite for the practical use of classification models. In this paper, we focus on the species recognition task in images concerned with large databases, a large number of fine-grained hierarchical classes, severe class imbalance, and varying image quality. We propose a framework for combining individual OOD measures into one combined OOD (COOD) measure using a supervised model. The individual measures are several existing state-of-the-art measures and several novel OOD measures developed with novel class detection and hierarchical class structure in mind. COOD was extensively evaluated on three large-scale (500k+ images) biodiversity datasets in the context of anomaly and novel class detection. We show that COOD outperforms individual, including state-of-the-art, OOD measures by a large margin in terms of TPR@1% FPR in the majority of experiments, e.g., improving detecting ImageNet images (OOD) from 54.3% to 85.4% for the iNaturalist 2018 dataset. SHAP (feature contribution) analysis shows that different individual OOD measures are essential for various tasks, indicating that multiple OOD measures and combinations are needed to generalize. Additionally, we show that explicitly considering ID images that are incorrectly classified for the original (species) recognition task is important for constructing high-performing OOD detection methods and for practical applicability. The framework can easily be extended or adapted to other tasks and media modalities.

In the context of interstellar communication, it is not known beforehand if the receiver of a given signal would be a plant, an insect, or even life forms unknown to terrestrial scientists. Regardless of the situation, the message time scale could be too fast or too slow and those beings would probably never decode it. Therefore, it is of interest to devise a way to encode messages agnostic of time scale. Fractal messaging would allow one to do this due to their structural self-similarity and, sometimes, scale invariance. By starting from a spatial embedding rationale, a framework is developed for a time scale-free messaging alternative. When one considers a time-agnostic framework for message transmission, it would be interesting to encode a message such that it could be decoded along several spatio-temporal scales. This way, the core idea of the framework hereby proposed is to encode a binary message as waves along infinitely many (power-like distributed) frequencies and amplitudes, transmit such message, and then decode and reproduce it. To do so, the components of the Weierstrass function, a known fractal, are used as the carriers of the message. Each component will have its amplitude modulated to embed the binary stream, allowing for a time-agnostic approach to messaging.

Varimax factor rotations, while popular among practitioners in psychology and statistics since being introduced by H. Kaiser, have historically been viewed with skepticism and suspicion by some theoreticians and mathematical statisticians. Now, work by K. Rohe and M. Zeng provides new, fundamental insight: varimax rotations provably perform statistical estimation in certain classes of latent variable models when paired with spectral-based matrix truncations for dimensionality reduction. We build on this newfound understanding of varimax rotations by developing further connections to network analysis and spectral methods rooted in entrywise matrix perturbation analysis. Concretely, this paper establishes the asymptotic multivariate normality of vectors in varimax-transformed Euclidean point clouds that represent low-dimensional node embeddings in certain latent space random graph models. We address related concepts including network sparsity, data denoising, and the role of matrix rank in latent variable parameterizations. Collectively, these findings, at the confluence of classical and contemporary multivariate analysis, reinforce methodology and inference procedures grounded in matrix factorization-based techniques. Numerical examples illustrate our findings and supplement our discussion.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

Most algorithms for representation learning and link prediction in relational data have been designed for static data. However, the data they are applied to usually evolves with time, such as friend graphs in social networks or user interactions with items in recommender systems. This is also the case for knowledge bases, which contain facts such as (US, has president, B. Obama, [2009-2017]) that are valid only at certain points in time. For the problem of link prediction under temporal constraints, i.e., answering queries such as (US, has president, ?, 2012), we propose a solution inspired by the canonical decomposition of tensors of order 4. We introduce new regularization schemes and present an extension of ComplEx (Trouillon et al., 2016) that achieves state-of-the-art performance. Additionally, we propose a new dataset for knowledge base completion constructed from Wikidata, larger than previous benchmarks by an order of magnitude, as a new reference for evaluating temporal and non-temporal link prediction methods.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

Nowadays, the Convolutional Neural Networks (CNNs) have achieved impressive performance on many computer vision related tasks, such as object detection, image recognition, image retrieval, etc. These achievements benefit from the CNNs outstanding capability to learn the input features with deep layers of neuron structures and iterative training process. However, these learned features are hard to identify and interpret from a human vision perspective, causing a lack of understanding of the CNNs internal working mechanism. To improve the CNN interpretability, the CNN visualization is well utilized as a qualitative analysis method, which translates the internal features into visually perceptible patterns. And many CNN visualization works have been proposed in the literature to interpret the CNN in perspectives of network structure, operation, and semantic concept. In this paper, we expect to provide a comprehensive survey of several representative CNN visualization methods, including Activation Maximization, Network Inversion, Deconvolutional Neural Networks (DeconvNet), and Network Dissection based visualization. These methods are presented in terms of motivations, algorithms, and experiment results. Based on these visualization methods, we also discuss their practical applications to demonstrate the significance of the CNN interpretability in areas of network design, optimization, security enhancement, etc.

北京阿比特科技有限公司