亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Autonomous agents that execute human tasks by controlling computers can enhance human productivity and application accessibility. Yet, progress in this field will be driven by realistic and reproducible benchmarks. We present AndroidWorld, a fully functioning Android environment that provides reward signals for 116 programmatic task workflows across 20 real world Android applications. Unlike existing interactive environments, which provide a static test set, AndroidWorld dynamically constructs tasks that are parameterized and expressed in natural language in unlimited ways, thus enabling testing on a much larger and realistic suite of tasks. Reward signals are derived from the computer's system state, making them durable across task variations and extensible across different apps. To demonstrate AndroidWorld's benefits and mode of operation, we introduce a new computer control agent, M3A. M3A can complete 30.6% of the AndroidWorld's tasks, leaving ample room for future work. Furthermore, we adapt a popular desktop web agent to work on Android, which we find to be less effective on mobile, suggesting future research is needed to achieve universal, cross-domain agents. Finally, we conduct a robustness analysis by testing M3A against a range of task variations on a representative subset of tasks, demonstrating that variations in task parameters can significantly alter the complexity of a task and therefore an agent's performance, highlighting the importance of testing agents under diverse conditions. AndroidWorld and the experiments in this paper are available at //github.com/google-research/android_world.

相關內容

Motor imagery electroencephalograph (MI-EEG) decoding plays a crucial role in developing motor imagery brain-computer interfaces (MI-BCIs). However, decoding intentions from MI remains challenging due to the inherent complexity of EEG signals relative to the small-sample size. In this paper, we propose an Efficient Dual Prototype Network (EDPNet) to enable accurate and fast MI decoding. EDPNet employs a lightweight adaptive spatial-spectral fusion module, which promotes more efficient information fusion between multiple EEG electrodes. Subsequently, a parameter-free multi-scale variance pooling module extracts more comprehensive temporal features. Furthermore, we introduce dual prototypical learning to optimize the feature space distribution and training process, thereby improving the model's generalization ability on small-sample MI datasets. Our experimental results show that the EDPNet outperforms state-of-the-art models with superior classification accuracy and kappa values (84.11% and 0.7881 for dataset BCI competition IV 2a, 86.65% and 0.7330 for dataset BCI competition IV 2b). Additionally, we use the BCI competition III IVa dataset with fewer training data to further validate the generalization ability of the proposed EDPNet. We also achieve superior performance with 82.03% classification accuracy. Benefiting from the lightweight parameters and superior decoding accuracy, our EDPNet shows great potential for MI-BCI applications. The code is publicly available at //github.com/hancan16/EDPNet.

Decompilers are widely used by security researchers and developers to reverse engineer executable code. While modern decompilers are adept at recovering instructions, control flow, and function boundaries, some useful information from the original source code, such as variable types and names, is lost during the compilation process. Our work aims to predict these variable types and names from the remaining information. We propose STRIDE, a lightweight technique that predicts variable names and types by matching sequences of decompiler tokens to those found in training data. We evaluate it on three benchmark datasets and find that STRIDE achieves comparable performance to state-of-the-art machine learning models for both variable retyping and renaming while being much simpler and faster. We perform a detailed comparison with two recent SOTA transformer-based models in order to understand the specific factors that make our technique effective. We implemented STRIDE in fewer than 1000 lines of Python and have open-sourced it under a permissive license at //github.com/hgarrereyn/STRIDE.

Many service computing applications require real-time dataset collection from multiple devices, necessitating efficient sampling techniques to reduce bandwidth and storage pressure. Compressive sensing (CS) has found wide-ranging applications in image acquisition and reconstruction. Recently, numerous deep-learning methods have been introduced for CS tasks. However, the accurate reconstruction of images from measurements remains a significant challenge, especially at low sampling rates. In this paper, we propose Uformer-ICS as a novel U-shaped transformer for image CS tasks by introducing inner characteristics of CS into transformer architecture. To utilize the uneven sparsity distribution of image blocks, we design an adaptive sampling architecture that allocates measurement resources based on the estimated block sparsity, allowing the compressed results to retain maximum information from the original image. Additionally, we introduce a multi-channel projection (MCP) module inspired by traditional CS optimization methods. By integrating the MCP module into the transformer blocks, we construct projection-based transformer blocks, and then form a symmetrical reconstruction model using these blocks and residual convolutional blocks. Therefore, our reconstruction model can simultaneously utilize the local features and long-range dependencies of image, and the prior projection knowledge of CS theory. Experimental results demonstrate its significantly better reconstruction performance than state-of-the-art deep learning-based CS methods.

While deep learning has become a core functional module of most software systems, concerns regarding the fairness of ML predictions have emerged as a significant issue that affects prediction results due to discrimination. Intersectional bias, which disproportionately affects members of subgroups, is a prime example of this. For instance, a machine learning model might exhibit bias against darker-skinned women, while not showing bias against individuals with darker skin or women. This problem calls for effective fairness testing before the deployment of such deep learning models in real-world scenarios. However, research into detecting such bias is currently limited compared to research on individual and group fairness. Existing tools to investigate intersectional bias lack important features such as support for multiple fairness metrics, fast and efficient computation, and user-friendly interpretation. This paper introduces Fairpriori, a novel biased subgroup discovery method, which aims to address these limitations. Fairpriori incorporates the frequent itemset generation algorithm to facilitate effective and efficient investigation of intersectional bias by producing fast fairness metric calculations on subgroups of a dataset. Through comparison with the state-of-the-art methods (e.g., Themis, FairFictPlay, and TestSGD) under similar conditions, Fairpriori demonstrates superior effectiveness and efficiency when identifying intersectional bias. Specifically, Fairpriori is easier to use and interpret, supports a wider range of use cases by accommodating multiple fairness metrics, and exhibits higher efficiency in computing fairness metrics. These findings showcase Fairpriori's potential for effectively uncovering subgroups affected by intersectional bias, supported by its open-source tooling at //anonymous.4open.science/r/Fairpriori-0320.

The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Federated Learning aims to learn machine learning models from multiple decentralized edge devices (e.g. mobiles) or servers without sacrificing local data privacy. Recent Natural Language Processing techniques rely on deep learning and large pre-trained language models. However, both big deep neural and language models are trained with huge amounts of data which often lies on the server side. Since text data is widely originated from end users, in this work, we look into recent NLP models and techniques which use federated learning as the learning framework. Our survey discusses major challenges in federated natural language processing, including the algorithm challenges, system challenges as well as the privacy issues. We also provide a critical review of the existing Federated NLP evaluation methods and tools. Finally, we highlight the current research gaps and future directions.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.

The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.

北京阿比特科技有限公司