亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In a context of malicious software detection, machine learning (ML) is widely used to generalize to new malware. However, it has been demonstrated that ML models can be fooled or may have generalization problems on malware that has never been seen. We investigate the possible benefits of quantum algorithms for classification tasks. We implement two models of Quantum Machine Learning algorithms, and we compare them to classical models for the classification of a dataset composed of malicious and benign executable files. We try to optimize our algorithms based on methods found in the literature, and analyze our results in an exploratory way, to identify the most interesting directions to explore for the future.

相關內容

Quantum computing is an emerging paradigm that has shown great promise in accelerating large-scale scientific, optimization, and machine-learning workloads. With most quantum computing solutions being offered over the cloud, it has become imperative to protect confidential and proprietary quantum code from being accessed by untrusted and/or adversarial agents. In response to this challenge, we propose SPYCE, which is the first known solution to obfuscate quantum code and output to prevent the leaking of any confidential information over the cloud. SPYCE implements a lightweight, scalable, and effective solution based on the unique principles of quantum computing to achieve this task.

Quantum computers possess the potential to process data using a remarkably reduced number of qubits compared to conventional bits, as per theoretical foundations. However, recent experiments have indicated that the practical feasibility of retrieving an image from its quantum encoded version is currently limited to very small image sizes. Despite this constraint, variational quantum machine learning algorithms can still be employed in the current noisy intermediate scale quantum (NISQ) era. An example is a hybrid quantum machine learning approach for edge detection. In our study, we present an application of quantum transfer learning for detecting cracks in gray value images. We compare the performance and training time of PennyLane's standard qubits with IBM's qasm\_simulator and real backends, offering insights into their execution efficiency.

The present study aims to explore the feasibility of language translation using quantum natural language processing algorithms on noisy intermediate-scale quantum (NISQ) devices. Classical methods in natural language processing (NLP) struggle with handling large-scale computations required for complex language tasks, but quantum NLP on NISQ devices holds promise in harnessing quantum parallelism and entanglement to efficiently process and analyze vast amounts of linguistic data, potentially revolutionizing NLP applications. Our research endeavors to pave the way for quantum neural machine translation, which could potentially offer advantages over classical methods in the future. We employ Shannon entropy to demonstrate the significant role of some appropriate angles of rotation gates in the performance of parametrized quantum circuits. In particular, we utilize these angles (parameters) as a means of communication between quantum circuits of different languages. To achieve our objective, we adopt the encoder-decoder model of classical neural networks and implement the translation task using long short-term memory (LSTM). Our experiments involved 160 samples comprising English sentences and their Persian translations. We trained the models with different optimisers implementing stochastic gradient descent (SGD) as primary and subsequently incorporating two additional optimizers in conjunction with SGD. Notably, we achieved optimal results-with mean absolute error of 0.03, mean squared error of 0.002, and 0.016 loss-by training the best model, consisting of two LSTM layers and using the Adam optimiser. Our small dataset, though consisting of simple synonymous sentences with word-to-word mappings, points to the utility of Shannon entropy as a figure of merit in more complex machine translation models for intricate sentence structures.

Few-shot image classification aims to accurately classify unlabeled images using only a few labeled samples. The state-of-the-art solutions are built by deep learning, which focuses on designing increasingly complex deep backbones. Unfortunately, the task remains very challenging due to the difficulty of transferring the knowledge learned in training classes to new ones. In this paper, we propose a novel approach based on the non-i.i.d paradigm of gradual machine learning (GML). It begins with only a few labeled observations, and then gradually labels target images in the increasing order of hardness by iterative factor inference in a factor graph. Specifically, our proposed solution extracts indicative feature representations by deep backbones, and then constructs both unary and binary factors based on the extracted features to facilitate gradual learning. The unary factors are constructed based on class center distance in an embedding space, while the binary factors are constructed based on k-nearest neighborhood. We have empirically validated the performance of the proposed approach on benchmark datasets by a comparative study. Our extensive experiments demonstrate that the proposed approach can improve the SOTA performance by 1-5% in terms of accuracy. More notably, it is more robust than the existing deep models in that its performance can consistently improve as the size of query set increases while the performance of deep models remains essentially flat or even becomes worse.

Abusive language is a concerning problem in online social media. Past research on detecting abusive language covers different platforms, languages, demographies, etc. However, models trained using these datasets do not perform well in cross-domain evaluation settings. To overcome this, a common strategy is to use a few samples from the target domain to train models to get better performance in that domain (cross-domain few-shot training). However, this might cause the models to overfit the artefacts of those samples. A compelling solution could be to guide the models toward rationales, i.e., spans of text that justify the text's label. This method has been found to improve model performance in the in-domain setting across various NLP tasks. In this paper, we propose RGFS (Rationale-Guided Few-Shot Classification) for abusive language detection. We first build a multitask learning setup to jointly learn rationales, targets, and labels, and find a significant improvement of 6% macro F1 on the rationale detection task over training solely rationale classifiers. We introduce two rationale-integrated BERT-based architectures (the RGFS models) and evaluate our systems over five different abusive language datasets, finding that in the few-shot classification setting, RGFS-based models outperform baseline models by about 7% in macro F1 scores and perform competitively to models finetuned on other source domains. Furthermore, RGFS-based models outperform LIME/SHAP-based approaches in terms of plausibility and are close in performance in terms of faithfulness.

Many studies have proposed machine-learning (ML) models for malware detection and classification, reporting an almost-perfect performance. However, they assemble ground-truth in different ways, use diverse static- and dynamic-analysis techniques for feature extraction, and even differ on what they consider a malware family. As a consequence, our community still lacks an understanding of malware classification results: whether they are tied to the nature and distribution of the collected dataset, to what extent the number of families and samples in the training dataset influence performance, and how well static and dynamic features complement each other. This work sheds light on those open questions. by investigating the key factors influencing ML-based malware detection and classification. For this, we collect the largest balanced malware dataset so far with 67K samples from 670 families (100 samples each), and train state-of-the-art models for malware detection and family classification using our dataset. Our results reveal that static features perform better than dynamic features, and that combining both only provides marginal improvement over static features. We discover no correlation between packing and classification accuracy, and that missing behaviors in dynamically-extracted features highly penalize their performance. We also demonstrate how a larger number of families to classify make the classification harder, while a higher number of samples per family increases accuracy. Finally, we find that models trained on a uniform distribution of samples per family better generalize on unseen data.

Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.

Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.

Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.

Our experience of the world is multimodal - we see objects, hear sounds, feel texture, smell odors, and taste flavors. Modality refers to the way in which something happens or is experienced and a research problem is characterized as multimodal when it includes multiple such modalities. In order for Artificial Intelligence to make progress in understanding the world around us, it needs to be able to interpret such multimodal signals together. Multimodal machine learning aims to build models that can process and relate information from multiple modalities. It is a vibrant multi-disciplinary field of increasing importance and with extraordinary potential. Instead of focusing on specific multimodal applications, this paper surveys the recent advances in multimodal machine learning itself and presents them in a common taxonomy. We go beyond the typical early and late fusion categorization and identify broader challenges that are faced by multimodal machine learning, namely: representation, translation, alignment, fusion, and co-learning. This new taxonomy will enable researchers to better understand the state of the field and identify directions for future research.

北京阿比特科技有限公司