亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Graph Neural Networks (GNNs) have been widely used to learn node representations and with outstanding performance on various tasks such as node classification. However, noise, which inevitably exists in real-world graph data, would considerably degrade the performance of GNNs revealed by recent studies. In this work, we propose a novel and robust GNN encoder, Low-Rank Graph Contrastive Learning (LR-GCL). Our method performs transductive node classification in two steps. First, a low-rank GCL encoder named LR-GCL is trained by prototypical contrastive learning with low-rank regularization. Next, using the features produced by LR-GCL, a linear transductive classification algorithm is used to classify the unlabeled nodes in the graph. Our LR-GCL is inspired by the low frequency property of the graph data and its labels, and it is also theoretically motivated by our sharp generalization bound for transductive learning. To the best of our knowledge, our theoretical result is among the first to theoretically demonstrate the advantage of low-rank learning in graph contrastive learning supported by strong empirical performance. Extensive experiments on public benchmarks demonstrate the superior performance of LR-GCL and the robustness of the learned node representations. The code of LR-GCL is available at \url{//anonymous.4open.science/r/Low-Rank_Graph_Contrastive_Learning-64A6/}.

相關內容

The increasing capabilities of Machine Learning (ML) models go hand in hand with an immense amount of data and computational power required for training. Therefore, training is usually outsourced into HPC facilities, where we have started to experience limits in scaling conventional HPC hardware, as theorized by Moore's law. Despite heavy parallelization and optimization efforts, current state-of-the-art ML models require weeks for training, which is associated with an enormous $CO_2$ footprint. Quantum Computing, and specifically Quantum Machine Learning (QML), can offer significant theoretical speed-ups and enhanced expressive power. However, training QML models requires tuning various hyperparameters, which is a nontrivial task and suboptimal choices can highly affect the trainability and performance of the models. In this study, we identify the most impactful hyperparameters and collect data about the performance of QML models. We compare different configurations and provide researchers with performance data and concrete suggestions for hyperparameter selection.

Training a Graph Neural Network (GNN) model on large-scale graphs involves a high volume of data communication and compu- tations. While state-of-the-art CPUs and GPUs feature high computing power, the Standard GNN training protocol adopted in existing GNN frameworks cannot efficiently utilize the platform resources. To this end, we propose a novel Unified CPU-GPU protocol that can improve the resource utilization of GNN training on a CPU-GPU platform. The Unified CPU-GPU protocol instantiates multiple GNN training processes in parallel on both the CPU and the GPU. By allocating training processes on the CPU to perform GNN training collaboratively with the GPU, the proposed protocol improves the platform resource utilization and reduces the CPU-GPU data transfer overhead. Since the performance of a CPU and a GPU varies, we develop a novel load balancer that balances the workload dynamically between CPUs and GPUs during runtime. We evaluate our protocol using two representative GNN sampling algorithms, with two widely-used GNN models, on three datasets. Compared with the standard training protocol adopted in the state-of-the-art GNN frameworks, our protocol effectively improves resource utilization and overall training time. On a platform where the GPU moderately outperforms the CPU, our protocol speeds up GNN training by up to 1.41x. On a platform where the GPU significantly outperforms the CPU, our protocol speeds up GNN training by up to 1.26x. Our protocol is open-sourced and can be seamlessly integrated into state-of-the-art GNN frameworks and accelerate GNN training. Our protocol particularly benefits those with limited GPU access due to its high demand.

Efficient implementation of massive multiple-input-multiple-output (MIMO) transceivers is essential for the next-generation wireless networks. To reduce the high computational complexity of the massive MIMO transceiver, in this paper, we propose a new massive MIMO architecture using finite-precision arithmetic. First, we conduct the rounding error analysis and derive the lower bound of the achievable rate for single-input-multiple-output (SIMO) using maximal ratio combining (MRC) and multiple-input-single-output (MISO) systems using maximal ratio transmission (MRT) with finite-precision arithmetic. Then, considering the multi-user scenario, the rounding error analysis of zero-forcing (ZF) detection and precoding is derived by using the normal equations (NE) method. The corresponding lower bounds of the achievable sum rate are also derived and asymptotic analyses are presented. Built upon insights from these analyses and lower bounds, we propose a mixed-precision architecture for massive MIMO systems to offset performance gaps due to finite-precision arithmetic. The corresponding analysis of rounding errors and computational costs is obtained. Simulation results validate the derived bounds and underscore the superiority of the proposed mixed-precision architecture to the conventional structure.

Exoskeleton locomotion must be robust while being adaptive to different users with and without payloads. To address these challenges, this work introduces a data-driven predictive control (DDPC) framework to synthesize walking gaits for lower-body exoskeletons, employing Hankel matrices and a state transition matrix for its data-driven model. The proposed approach leverages DDPC through a multi-layer architecture. At the top layer, DDPC serves as a planner employing Hankel matrices and a state transition matrix to generate a data-driven model that can learn and adapt to varying users and payloads. At the lower layer, our method incorporates inverse kinematics and passivity-based control to map the planned trajectory from DDPC into the full-order states of the lower-body exoskeleton. We validate the effectiveness of this approach through numerical simulations and hardware experiments conducted on the Atalante lower-body exoskeleton with different payloads. Moreover, we conducted a comparative analysis against the model predictive control (MPC) framework based on the reduced-order linear inverted pendulum (LIP) model. Through this comparison, the paper demonstrates that DDPC enables robust bipedal walking at various velocities while accounting for model uncertainties and unknown perturbations.

Pruning for Spiking Neural Networks (SNNs) has emerged as a fundamental methodology for deploying deep SNNs on resource-constrained edge devices. Though the existing pruning methods can provide extremely high weight sparsity for deep SNNs, the high weight sparsity brings a workload imbalance problem. Specifically, the workload imbalance happens when a different number of non-zero weights are assigned to hardware units running in parallel. This results in low hardware utilization and thus imposes longer latency and higher energy costs. In preliminary experiments, we show that sparse SNNs (~98% weight sparsity) can suffer as low as ~59% utilization. To alleviate the workload imbalance problem, we propose u-Ticket, where we monitor and adjust the weight connections of the SNN during Lottery Ticket Hypothesis (LTH) based pruning, thus guaranteeing the final ticket gets optimal utilization when deployed onto the hardware. Experiments indicate that our u-Ticket can guarantee up to 100% hardware utilization, thus reducing up to 76.9% latency and 63.8% energy cost compared to the non-utilization-aware LTH method.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

Graph Neural Networks (GNNs) have recently been used for node and graph classification tasks with great success, but GNNs model dependencies among the attributes of nearby neighboring nodes rather than dependencies among observed node labels. In this work, we consider the task of inductive node classification using GNNs in supervised and semi-supervised settings, with the goal of incorporating label dependencies. Because current GNNs are not universal (i.e., most-expressive) graph representations, we propose a general collective learning approach to increase the representation power of any existing GNN. Our framework combines ideas from collective classification with self-supervised learning, and uses a Monte Carlo approach to sampling embeddings for inductive learning across graphs. We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy, for a variety of state-of-the-art GNNs.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司