In this study, we address the challenge of constructing continuous three-dimensional (3D) models that accurately represent uncertain surfaces, derived from noisy and incomplete LiDAR scanning data. Building upon our prior work, which utilized the Gaussian Process (GP) and Gaussian Mixture Model (GMM) for structured building models, we introduce a more generalized approach tailored for complex surfaces in urban scenes, where four-dimensional (4D) GMM Regression and GP with derivative observations are applied. A Hierarchical GMM (HGMM) is employed to optimize the number of GMM components and speed up the GMM training. With the prior map obtained from HGMM, GP inference is followed for the refinement of the final map. Our approach models the implicit surface of the geo-object and enables the inference of the regions that are not completely covered by measurements. The integration of GMM and GP yields well-calibrated uncertainty estimates alongside the surface model, enhancing both accuracy and reliability. The proposed method is evaluated on the real data collected by a mobile mapping system. Compared to the performance in mapping accuracy and uncertainty quantification of other methods such as Gaussian Process Implicit Surface map (GPIS) and log-Gaussian Process Implicit Surface map (Log-GPIS), the proposed method achieves lower RMSEs, higher log-likelihood values and fewer computational costs for the evaluated datasets.
This study delves into the pivotal role played by non-experts in knowledge production on open collaboration platforms, with a particular focus on the intricate process of tag development that culminates in the proposal of new glitch classes. Leveraging the power of Association Rule Mining (ARM), this research endeavors to unravel the underlying dynamics of collaboration among citizen scientists. By meticulously quantifying tag associations and scrutinizing their temporal dynamics, the study provides a comprehensive and nuanced understanding of how non-experts collaborate to generate valuable scientific insights. Furthermore, this investigation extends its purview to examine the phenomenon of ideological convergence within online citizen science knowledge production. To accomplish this, a novel measurement algorithm, based on the Mann-Kendall Trend Test, is introduced. This innovative approach sheds illuminating light on the dynamics of collaborative knowledge production, revealing both the vast opportunities and daunting challenges inherent in leveraging non-expert contributions for scientific research endeavors. Notably, the study uncovers a robust pattern of convergence in ideology, employing both the newly proposed convergence testing method and the traditional approach based on the stationarity of time series data. This groundbreaking discovery holds significant implications for understanding the dynamics of online citizen science communities and underscores the crucial role played by non-experts in shaping the scientific landscape of the digital age. Ultimately, this study contributes significantly to our understanding of online citizen science communities, highlighting their potential to harness collective intelligence for tackling complex scientific tasks and enriching our comprehension of collaborative knowledge production processes in the digital age.
In this study, we assess the usability of interactive personal assistants (IPAs), such as Amazon Alexa, in a simulated kitchen smart home environment, with deaf and hard of hearing users. Participants engage in activities in a way that causes their hands to get dirty. With these dirty hands, they are tasked with two different input methods for IPAs: American Sign Language (ASL) in a Wizard-of-Oz design, and smart home apps with a touchscreen. Usability ratings show that participants significantly preferred ASL over touch-based apps with dirty hands, although not to a larger extent than in comparable previous work with clean hands. Participants also expressed significant enthusiasm for ASL-based IPA interaction in Netpromoter scores and in questions about their overall preferences. Preliminary observations further suggest that having dirty hands may affect the way people sign, which may pose challenges for building IPAs that natively support sign language input.
In this study, we propose a non-coherent over-the-air computation scheme to calculate the majority vote (MV) reliably in fading channels. The proposed approach relies on modulating the amplitude of the elements of complementary sequences based on the sign of the parameters to be aggregated. Since it does not use channel state information at the nodes, it is compatible with time-varying channels. To demonstrate the efficacy of our method, we employ it in a scenario where an unmanned aerial vehicle is guided by distributed sensors, relying on the MV computed using our proposed scheme. We show that the proposed scheme notably reduces the computation error rate with a longer sequence length in fading channels while maintaining the peak-to-mean-envelope power ratio of the transmitted orthogonal frequency division multiplexing signals to be less than or equal to 3 dB.
In this study, we address the challenge of constructing continuous three-dimensional (3D) models that accurately represent uncertain surfaces, derived from noisy and incomplete LiDAR scanning data. Building upon our prior work, which utilized the Gaussian Process (GP) and Gaussian Mixture Model (GMM) for structured building models, we introduce a more generalized approach tailored for complex surfaces in urban scenes, where GMM Regression and GP with derivative observations are applied. A Hierarchical GMM (HGMM) is employed to optimize the number of GMM components and speed up the GMM training. With the prior map obtained from HGMM, GP inference is followed for the refinement of the final map. Our approach models the implicit surface of the geo-object and enables the inference of the regions that are not completely covered by measurements. The integration of GMM and GP yields well-calibrated uncertainty estimates alongside the surface model, enhancing both accuracy and reliability. The proposed method is evaluated on real data collected by a mobile mapping system. Compared to the performance in mapping accuracy and uncertainty quantification of other methods, such as Gaussian Process Implicit Surface map (GPIS) and log-Gaussian Process Implicit Surface map (Log-GPIS), the proposed method achieves lower RMSEs, higher log-likelihood values and lower computational costs for the evaluated datasets.
In this study, we address the complex issue of graph clustering in signed graphs, which are characterized by positive and negative weighted edges representing attraction and repulsion among nodes, respectively. The primary objective is to efficiently partition the graph into clusters, ensuring that nodes within a cluster are closely linked by positive edges while minimizing negative edge connections between them. To tackle this challenge, we first develop a scalable multilevel algorithm based on label propagation and FM local search. Then we develop a memetic algorithm that incorporates a multilevel strategy. This approach meticulously combines elements of evolutionary algorithms with local refinement techniques, aiming to explore the search space more effectively than repeated executions. Our experimental analysis reveals that this our new algorithms significantly outperforms existing state-of-the-art algorithms. For example, our memetic algorithm can reach solution quality of the previous state-of-the-art algorithm up to four orders of magnitude faster.
Deep neural networks (DNNs) trained with the logistic loss (i.e., the cross entropy loss) have made impressive advancements in various binary classification tasks. However, generalization analysis for binary classification with DNNs and logistic loss remains scarce. The unboundedness of the target function for the logistic loss is the main obstacle to deriving satisfactory generalization bounds. In this paper, we aim to fill this gap by establishing a novel and elegant oracle-type inequality, which enables us to deal with the boundedness restriction of the target function, and using it to derive sharp convergence rates for fully connected ReLU DNN classifiers trained with logistic loss. In particular, we obtain optimal convergence rates (up to log factors) only requiring the H\"older smoothness of the conditional class probability $\eta$ of data. Moreover, we consider a compositional assumption that requires $\eta$ to be the composition of several vector-valued functions of which each component function is either a maximum value function or a H\"older smooth function only depending on a small number of its input variables. Under this assumption, we derive optimal convergence rates (up to log factors) which are independent of the input dimension of data. This result explains why DNN classifiers can perform well in practical high-dimensional classification problems. Besides the novel oracle-type inequality, the sharp convergence rates given in our paper also owe to a tight error bound for approximating the natural logarithm function near zero (where it is unbounded) by ReLU DNNs. In addition, we justify our claims for the optimality of rates by proving corresponding minimax lower bounds. All these results are new in the literature and will deepen our theoretical understanding of classification with DNNs.
A sequence of predictions is calibrated if and only if it induces no swap regret to all down-stream decision tasks. We study the Maximum Swap Regret (MSR) of predictions for binary events: the swap regret maximized over all downstream tasks with bounded payoffs. Previously, the best online prediction algorithm for minimizing MSR is obtained by minimizing the K1 calibration error, which upper bounds MSR up to a constant factor. However, recent work (Qiao and Valiant, 2021) gives an ${\Omega}(T^{0.528})$ lower bound for the worst-case expected K1 calibration error incurred by any randomized algorithm in T rounds, presenting a barrier to achieving better rates for MSR. Several relaxations of MSR have been considered to overcome this barrier, via external regret (Kleinberg et al., 2023) and regret bounds depending polynomially on the number of actions in downstream tasks (Noarov et al., 2023; Roth and Shi, 2024). We show that the barrier can be surpassed without any relaxations: we give an efficient randomized prediction algorithm that guarantees $O(TlogT)$ expected MSR. We also discuss the economic utility of calibration by viewing MSR as a decision-theoretic calibration error metric and study its relationship to existing metrics.
In this article, we propose an accuracy-assuring technique for finding a solution for unsymmetric linear systems. Such problems are related to different areas such as image processing, computer vision, and computational fluid dynamics. Parallel implementation of Krylov subspace methods speeds up finding approximate solutions for linear systems. In this context, the refined approach in pipelined BiCGStab enhances scalability on distributed memory machines, yielding to substantial speed improvements compared to the standard BiCGStab method. However, it's worth noting that the pipelined BiCGStab algorithm sacrifices some accuracy, which is stabilized with the residual replacement technique. This paper aims to address this issue by employing the ExBLAS-based reproducible approach. We validate the idea on a set of matrices from the SuiteSparse Matrix Collection.
Molecular design and synthesis planning are two critical steps in the process of molecular discovery that we propose to formulate as a single shared task of conditional synthetic pathway generation. We report an amortized approach to generate synthetic pathways as a Markov decision process conditioned on a target molecular embedding. This approach allows us to conduct synthesis planning in a bottom-up manner and design synthesizable molecules by decoding from optimized conditional codes, demonstrating the potential to solve both problems of design and synthesis simultaneously. The approach leverages neural networks to probabilistically model the synthetic trees, one reaction step at a time, according to reactivity rules encoded in a discrete action space of reaction templates. We train these networks on hundreds of thousands of artificial pathways generated from a pool of purchasable compounds and a list of expert-curated templates. We validate our method with (a) the recovery of molecules using conditional generation, (b) the identification of synthesizable structural analogs, and (c) the optimization of molecular structures given oracle functions relevant to drug discovery.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.