In this paper, we use the Bayesian inversion approach to study the data assimilation problem for a family of tumor growth models described by porous-medium type equations. The models contain uncertain parameters and are indexed by a physical parameter $m$, which characterizes the constitutive relation between density and pressure. Based on these models, we employ the Bayesian inversion framework to infer parametric and nonparametric unknowns that affect tumor growth from noisy observations of tumor cell density. We establish the well-posedness and the stability theories for the Bayesian inversion problem and further prove the convergence of the posterior distribution in the so-called incompressible limit, $m \rightarrow \infty$. Since the posterior distribution across the index regime $m\in[2,\infty)$ can thus be treated in a unified manner, such theoretical results also guide the design of the numerical inference for the unknown. We propose a generic computational framework for such inverse problems, which consists of a typical sampling algorithm and an asymptotic preserving solver for the forward problem. With extensive numerical tests, we demonstrate that the proposed method achieves satisfactory accuracy in the Bayesian inference of the tumor growth models, which is uniform with respect to the constitutive relation.
This paper makes two contributions to the field of text-based patent similarity. First, it compares the performance of different kinds of patent-specific pretrained embedding models, namely static word embeddings (such as word2vec and doc2vec models) and contextual word embeddings (such as transformers based models), on the task of patent similarity calculation. Second, it compares specifically the performance of Sentence Transformers (SBERT) architectures with different training phases on the patent similarity task. To assess the models' performance, we use information about patent interferences, a phenomenon in which two or more patent claims belonging to different patent applications are proven to be overlapping by patent examiners. Therefore, we use these interferences cases as a proxy for maximum similarity between two patents, treating them as ground-truth to evaluate the performance of the different embedding models. Our results point out that, first, Patent SBERT-adapt-ub, the domain adaptation of the pretrained Sentence Transformer architecture proposed in this research, outperforms the current state-of-the-art in patent similarity. Second, they show that, in some cases, large static models performances are still comparable to contextual ones when trained on extensive data; thus, we believe that the superiority in the performance of contextual embeddings may not be related to the actual architecture but rather to the way the training phase is performed.
This paper studies optimal hypothesis testing for nonregular statistical models with parameter-dependent support. We consider both one-sided and two-sided hypothesis testing and develop asymptotically uniformly most powerful tests based on the likelihood ratio process. The proposed one-sided test involves randomization to achieve asymptotic size control, some tuning constant to avoid discontinuities in the limiting likelihood ratio process, and a user-specified alternative hypothetical value to achieve the asymptotic optimality. Our two-sided test becomes asymptotically uniformly most powerful without imposing further restrictions such as unbiasedness. Simulation results illustrate desirable power properties of the proposed tests.
We address the problem of the best uniform approximation of a continuous function on a convex domain. The approximation is by linear combinations of a finite system of functions (not necessarily Chebyshev) under arbitrary linear constraints. By modifying the concept of alternance and of the Remez iterative procedure we present a method, which demonstrates its efficiency in numerical problems. The linear rate of convergence is proved under some favourable assumptions. A special attention is paid to systems of complex exponents, Gaussian functions, lacunar algebraic and trigonometric polynomials. Applications to signal processing, linear ODE, switching dynamical systems, and to Markov-Bernstein type inequalities are considered.
Deep generative models aim to learn the underlying distribution of data and generate new ones. Despite the diversity of generative models and their high-quality generation performance in practice, most of them lack rigorous theoretical convergence proofs. In this work, we aim to establish some convergence results for OT-Flow, one of the deep generative models. First, by reformulating the framework of OT-Flow model, we establish the $\Gamma$-convergence of the formulation of OT-flow to the corresponding optimal transport (OT) problem as the regularization term parameter $\alpha$ goes to infinity. Second, since the loss function will be approximated by Monte Carlo method in training, we established the convergence between the discrete loss function and the continuous one when the sample number $N$ goes to infinity as well. Meanwhile, the approximation capability of the neural network provides an upper bound for the discrete loss function of the minimizers. The proofs in both aspects provide convincing assurances for OT-Flow.
This paper introduces an innovative method for constructing copula models capable of describing arbitrary non-monotone dependence structures. The proposed method enables the creation of such copulas in parametric form, thus allowing the resulting models to adapt to diverse and intricate real-world data patterns. We apply this novel methodology to analyze the relationship between returns and trading volumes in financial markets, a domain where the existence of non-monotone dependencies is well-documented in the existing literature. Our approach exhibits superior adaptability compared to other models which have previously been proposed in the literature, enabling a deeper understanding of the dependence structure among the considered variables.
In this paper, we derive high-dimensional asymptotic properties of the Moore-Penrose inverse and the ridge-type inverse of the sample covariance matrix. In particular, the analytical expressions of the weighted sample trace moments are deduced for both generalized inverse matrices and are present by using the partial exponential Bell polynomials which can easily be computed in practice. The existent results are extended in several directions: (i) First, the population covariance matrix is not assumed to be a multiple of the identity matrix; (ii) Second, the assumption of normality is not used in the derivation; (iii) Third, the asymptotic results are derived under the high-dimensional asymptotic regime. Our findings are used to construct improved shrinkage estimators of the precision matrix, which asymptotically minimize the quadratic loss with probability one. Finally, the finite sample properties of the derived theoretical results are investigated via an extensive simulation study.
Inspired by the relation between deep neural network (DNN) and partial differential equations (PDEs), we study the general form of the PDE models of deep neural networks. To achieve this goal, we formulate DNN as an evolution operator from a simple base model. Based on several reasonable assumptions, we prove that the evolution operator is actually determined by convection-diffusion equation. This convection-diffusion equation model gives mathematical explanation for several effective networks. Moreover, we show that the convection-diffusion model improves the robustness and reduces the Rademacher complexity. Based on the convection-diffusion equation, we design a new training method for ResNets. Experiments validate the performance of the proposed method.
We consider the problem of estimating log-determinants of large, sparse, positive definite matrices. A key focus of our algorithm is to reduce computational cost, and it is based on sparse approximate inverses. The algorithm can be implemented to be adaptive, and it uses graph spline approximation to improve accuracy. We illustrate our approach on classes of large sparse matrices.
In this paper we consider functional data with heterogeneity in time and in population. We propose a mixture model with segmentation of time to represent this heterogeneity while keeping the functional structure. Maximum likelihood estimator is considered, proved to be identifiable and consistent. In practice, an EM algorithm is used, combined with dynamic programming for the maximization step, to approximate the maximum likelihood estimator. The method is illustrated on a simulated dataset, and used on a real dataset of electricity consumption.
In this paper we investigate the existence of subexponential parameterized algorithms of three fundamental cycle-hitting problems in geometric graph classes. The considered problems, \textsc{Triangle Hitting} (TH), \textsc{Feedback Vertex Set} (FVS), and \textsc{Odd Cycle Transversal} (OCT) ask for the existence in a graph $G$ of a set $X$ of at most $k$ vertices such that $G-X$ is, respectively, triangle-free, acyclic, or bipartite. Such subexponential parameterized algorithms are known to exist in planar and even $H$-minor free graphs from bidimensionality theory [Demaine et al., JACM 2005], and there is a recent line of work lifting these results to geometric graph classes consisting of intersection of "fat" objects ([Grigoriev et al., FOCS 2022] and [Lokshtanov et al., SODA 2022]). In this paper we focus on "thin" objects by considering intersection graphs of segments in the plane with $d$ possible slopes ($d$-DIR graphs) and contact graphs of segments in the plane. Assuming the ETH, we rule out the existence of algorithms: - solving TH in time $2^{o(n)}$ in 2-DIR graphs; and - solving TH, FVS, and OCT in time $2^{o(\sqrt{n})}$ in $K_{2,2}$-free contact 2-DIR graphs. These results indicate that additional restrictions are necessary in order to obtain subexponential parameterized algorithms for %these problems. In this direction we provide: - a $2^{O(k^{3/4}\cdot \log k)}n^{O(1)}$-time algorithm for FVS in contact segment graphs; - a $2^{O(\sqrt d\cdot t^2 \log t\cdot k^{2/3}\log k)} n^{O(1)}$-time algorithm for TH in $K_{t,t}$-free $d$-DIR graphs; and - a $2^{O(k^{7/9}\log^{3/2}k)} n^{O(1)}$-time algorithm for TH in contact segment graphs.