亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We use a Gaussian Process Regression (GPR) strategy that was recently developed [3,16,17] to analyze different types of curves that are commonly encountered in parametric eigenvalue problems. We employ an offline-online decomposition method. In the offline phase, we generate the basis of the reduced space by applying the proper orthogonal decomposition (POD) method on a collection of pre-computed, full-order snapshots at a chosen set of parameters. Then, we generate our GPR model using four different Mat\'{e}rn covariance functions. In the online phase, we use this model to predict both eigenvalues and eigenvectors at new parameters. We then illustrate how the choice of each covariance function influences the performance of GPR. Furthermore, we discuss the connection between Gaussian Process Regression and spline methods and compare the performance of the GPR method against linear and cubic spline methods. We show that GPR outperforms other methods for functions with a certain regularity.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

The present article aims to design and analyze efficient first-order strong schemes for a generalized A\"{i}t-Sahalia type model arising in mathematical finance and evolving in a positive domain $(0, \infty)$, which possesses a diffusion term with superlinear growth and a highly nonlinear drift that blows up at the origin. Such a complicated structure of the model unavoidably causes essential difficulties in the construction and convergence analysis of time discretizations. By incorporating implicitness in the term $\alpha_{-1} x^{-1}$ and a corrective mapping $\Phi_h$ in the recursion, we develop a novel class of explicit and unconditionally positivity-preserving (i.e., for any step-size $h>0$) Milstein-type schemes for the underlying model. In both non-critical and general critical cases, we introduce a novel approach to analyze mean-square error bounds of the novel schemes, without relying on a priori high-order moment bounds of the numerical approximations. The expected order-one mean-square convergence is attained for the proposed scheme. The above theoretical guarantee can be used to justify the optimal complexity of the Multilevel Monte Carlo method. Numerical experiments are finally provided to verify the theoretical findings.

In this work we study the numerical approximation of a class of ergodic Backward Stochastic Differential Equations. These equations are formulated in an infinite horizon framework and provide a probabilistic representation for elliptic Partial Differential Equations of ergodic type. In order to build our numerical scheme, we put forward a new representation of the PDE solution by using a classical probabilistic representation of the gradient. Then, based on this representation, we propose a fully implementable numerical scheme using a Picard iteration procedure, a grid space discretization and a Monte-Carlo approximation. Up to a limiting technical condition that guarantee the contraction of the Picard procedure, we obtain an upper bound for the numerical error. We also provide some numerical experiments that show the efficiency of this approach for small dimensions.

We present exact non-Gaussian joint likelihoods for auto- and cross-correlation functions on arbitrarily masked spherical Gaussian random fields. Our considerations apply to spin-0 as well as spin-2 fields but are demonstrated here for the spin-2 weak-lensing correlation function. We motivate that this likelihood cannot be Gaussian and show how it can nevertheless be calculated exactly for any mask geometry and on a curved sky, as well as jointly for different angular-separation bins and redshift-bin combinations. Splitting our calculation into a large- and small-scale part, we apply a computationally efficient approximation for the small scales that does not alter the overall non-Gaussian likelihood shape. To compare our exact likelihoods to correlation-function sampling distributions, we simulated a large number of weak-lensing maps, including shape noise, and find excellent agreement for one-dimensional as well as two-dimensional distributions. Furthermore, we compare the exact likelihood to the widely employed Gaussian likelihood and find significant levels of skewness at angular separations $\gtrsim 1^{\circ}$ such that the mode of the exact distributions is shifted away from the mean towards lower values of the correlation function. We find that the assumption of a Gaussian random field for the weak-lensing field is well valid at these angular separations. Considering the skewness of the non-Gaussian likelihood, we evaluate its impact on the posterior constraints on $S_8$. On a simplified weak-lensing-survey setup with an area of $10 \ 000 \ \mathrm{deg}^2$, we find that the posterior mean of $S_8$ is up to $2\%$ higher when using the non-Gaussian likelihood, a shift comparable to the precision of current stage-III surveys.

We consider the statistical linear inverse problem of making inference on an unknown source function in an elliptic partial differential equation from noisy observations of its solution. We employ nonparametric Bayesian procedures based on Gaussian priors, leading to convenient conjugate formulae for posterior inference. We review recent results providing theoretical guarantees on the quality of the resulting posterior-based estimation and uncertainty quantification, and we discuss the application of the theory to the important classes of Gaussian series priors defined on the Dirichlet-Laplacian eigenbasis and Mat\'ern process priors. We provide an implementation of posterior inference for both classes of priors, and investigate its performance in a numerical simulation study.

In this work, N\'ed\'elec elements on locally refined meshes with hanging nodes are considered. A crucial aspect is the orientation of the hanging edges and faces. For non-orientable meshes, no solution or implementation has been available to date. The problem statement and corresponding algorithms are described in great detail. As a model problem, the time-harmonic Maxwell's equations are adopted because N\'ed\'elec elements constitute their natural discretization. The algorithms and implementation are demonstrated through two numerical examples on different uniformly and adaptively refined meshes. The implementation is performed within the finite element library deal.II.

The stochastic reaction-diffusion model driven by a multiplicative noise is examined. We construct the gradient discretisation method (GDM), an abstract framework combining several numerical method families. The paper provides the discretisation and proves the convergence of the approximate schemes using a compactness argument that works under natural assumptions on data. We also investigate, using a finite volume method, known as the hybrid mixed mimetic (HMM) approach, the effects of multiplicative noise on the dynamics of the travelling waves in the excitable media displayed by the model. Particularly, we consider how sufficiently high noise can cause waves to backfire or fail to propagate.

The trustworthiness of Machine Learning (ML) models can be difficult to assess, but is critical in high-risk or ethically sensitive applications. Many models are treated as a `black-box' where the reasoning or criteria for a final decision is opaque to the user. To address this, some existing Explainable AI (XAI) approaches approximate model behaviour using perturbed data. However, such methods have been criticised for ignoring feature dependencies, with explanations being based on potentially unrealistic data. We propose a novel framework, CHILLI, for incorporating data context into XAI by generating contextually aware perturbations, which are faithful to the training data of the base model being explained. This is shown to improve both the soundness and accuracy of the explanations.

We provide a complete solution to the problem of infinite quantum signal processing for the class of Szeg\H{o} functions, which are functions that satisfy a logarithmic integrability condition and include almost any function that allows for a quantum signal processing representation. We do so by introducing a new algorithm called the Riemann-Hilbert-Weiss algorithm, which can compute any individual phase factor independent of all other phase factors. Our algorithm is also the first provably stable numerical algorithm for computing phase factors of any arbitrary Szeg\H{o} function. The proof of stability involves solving a Riemann-Hilbert factorization problem in nonlinear Fourier analysis using elements of spectral theory.

A new approach based on censoring and moment criterion is introduced for parameter estimation of count distributions when the probability generating function is available even though a closed form of the probability mass function and/or finite moments do not exist.

We prove the convergence of a damped Newton's method for the nonlinear system resulting from a discretization of the second boundary value problem for the Monge-Ampere equation. The boundary condition is enforced through the use of the notion of asymptotic cone. The differential operator is discretized based on a discrete analogue of the subdifferential.

北京阿比特科技有限公司