亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Explainable AI has brought transparency into complex ML blackboxes, enabling, in particular, to identify which features these models use for their predictions. So far, the question of explaining predictive uncertainty, i.e. why a model 'doubts', has been scarcely studied. Our investigation reveals that predictive uncertainty is dominated by second-order effects, involving single features or product interactions between them. We contribute a new method for explaining predictive uncertainty based on these second-order effects. Computationally, our method reduces to a simple covariance computation over a collection of first-order explanations. Our method is generally applicable, allowing for turning common attribution techniques (LRP, Gradient x Input, etc.) into powerful second-order uncertainty explainers, which we call CovLRP, CovGI, etc. The accuracy of the explanations our method produces is demonstrated through systematic quantitative evaluations, and the overall usefulness of our method is demonstrated via two practical showcases.

相關內容

Generalizable NeRF can directly synthesize novel views across new scenes, eliminating the need for scene-specific retraining in vanilla NeRF. A critical enabling factor in these approaches is the extraction of a generalizable 3D representation by aggregating source-view features. In this paper, we propose an Entangled View-Epipolar Information Aggregation method dubbed EVE-NeRF. Different from existing methods that consider cross-view and along-epipolar information independently, EVE-NeRF conducts the view-epipolar feature aggregation in an entangled manner by injecting the scene-invariant appearance continuity and geometry consistency priors to the aggregation process. Our approach effectively mitigates the potential lack of inherent geometric and appearance constraint resulting from one-dimensional interactions, thus further boosting the 3D representation generalizablity. EVE-NeRF attains state-of-the-art performance across various evaluation scenarios. Extensive experiments demonstate that, compared to prevailing single-dimensional aggregation, the entangled network excels in the accuracy of 3D scene geometry and appearance reconstruction. Our code is publicly available at //github.com/tatakai1/EVENeRF.

In a simple, undirected graph G, an edge 2-coloring is a coloring of the edges such that no vertex is incident to edges with more than 2 distinct colors. The problem maximum edge 2-coloring (ME2C) is to find an edge 2-coloring in a graph G with the goal to maximize the number of colors. For a relevant graph class, ME2C models anti-Ramsey numbers and it was considered in network applications. For the problem a 2-approximation algorithm is known, and if the input graph has a perfect matching, the same algorithm has been shown to have a performance guarantee of 5/3. It is known that ME2C is APX-hard and that it is UG-hard to obtain an approximation ratio better than 1.5. We show that if the input graph has a perfect matching, there is a polynomial time 1.625-approximation and if the graph is claw-free or if the maximum degree of the input graph is at most three (i.e., the graph is subcubic), there is a polynomial time 1.5-approximation algorithm for ME2C

Though numerous solvers have been proposed for the MaxSAT problem, and the benchmark environment such as MaxSAT Evaluations provides a platform for the comparison of the state-of-the-art solvers, existing assessments were usually evaluated based on the quality, e.g., fitness, of the best-found solutions obtained within a given running time budget. However, concerning solely the final obtained solutions regarding specific time budgets may restrict us from comprehending the behavior of the solvers along the convergence process. This paper demonstrates that Empirical Cumulative Distribution Functions can be used to compare MaxSAT local search solvers' anytime performance across multiple problem instances and various time budgets. The assessment reveals distinctions in solvers' performance and displays that the (dis)advantages of solvers adjust along different running times. This work also exhibits that the quantitative and high variance assessment of anytime performance can guide machines, i.e., automatic configurators, to search for better parameter settings. Our experimental results show that the hyperparameter optimization tool, i.e., SMAC, generally achieves better parameter settings of local search when using the anytime performance as the cost function, compared to using the fitness of the best-found solutions.

Neural fields are evolving towards a general-purpose continuous representation for visual computing. Yet, despite their numerous appealing properties, they are hardly amenable to signal processing. As a remedy, we present a method to perform general continuous convolutions with general continuous signals such as neural fields. Observing that piecewise polynomial kernels reduce to a sparse set of Dirac deltas after repeated differentiation, we leverage convolution identities and train a repeated integral field to efficiently execute large-scale convolutions. We demonstrate our approach on a variety of data modalities and spatially-varying kernels.

In this paper, we propose a class of nonlocal models to approximate the Poisson model on manifolds with homogeneous Neumann boundary condition, where the manifolds are assumed to be embedded in high dimensional Euclid spaces. In comparison to the existing nonlocal approximation of Poisson models with Neumann boundary, we optimize the truncation error of model by adding an augmented term along the $2\delta$ layer of boundary, with $2\delta$ be the nonlocal interaction horizon. Such term is formulated by the integration of the second order normal derivative of solution through the boundary, while the second order normal derivative is expressed as the difference between the interior Laplacian and the boundary Laplacian. The concentration of our paper is on the construction of nonlocal model, the well-posedness of model, and its second-order convergence rate to its local counterpart. The localization rate of our nonlocal model is currently optimal among all related works even for the case of high dimensional Euclid spaces.

In the Network Revenue Management (NRM) problem, products composed of up to L resources are sold to stochastically arriving customers. We take a randomized rounding approach to NRM, motivated by developments in Online Contention Resolution Schemes (OCRS). The goal is to take a fractional solution to NRM that satisfies the resource constraints in expectation, and implement it in an online policy that satisfies the resource constraints in any state, while (approximately) preserving all of the sales that were prescribed by the fractional solution. OCRS cannot be naively applied to NRM or revenue management problems in general, because customer substitution induces a negative correlation in products being demanded. We start by deriving an OCRS that achieves a guarantee of 1/(1+L) for NRM with customer substitution, matching a common benchmark in the literature. We then show how to beat this benchmark for all integers L>1 assuming no substitution, i.e., in the standard OCRS setting. By contrast, we show that this benchmark is unbeatable using OCRS or any fractional relaxation if there is customer substitution, for all integers L that are the power of a prime number. Finally, we show how to beat 1/(1+L) even with customer substitution, if the products comprise one item from each of up to L groups. Our results have corresponding implications for Online Combinatorial Auctions, in which buyers bid for bundles of up to L items, and buyers being single-minded is akin to no substitution. Our final result also beats 1/(1+L) for Prophet Inequality on the intersection of L partition matroids. All in all, our paper provides a unifying framework for applying OCRS to these problems, delineating the impact of substitution, and establishing a separation between the guarantees achievable with vs. without substitution under general resource constraints parametrized by L.

Agents in mixed-motive coordination problems such as Chicken may fail to coordinate on a Pareto-efficient outcome. Safe Pareto improvements (SPIs) were originally proposed to mitigate miscoordination in cases where players lack probabilistic beliefs as to how their delegates will play a game; delegates are instructed to behave so as to guarantee a Pareto improvement on how they would play by default. More generally, SPIs may be defined as transformations of strategy profiles such that all players are necessarily better off under the transformed profile. In this work, we investigate the extent to which SPIs can reduce downsides of miscoordination between expected utility-maximizing agents. We consider games in which players submit computer programs that can condition their decisions on each other's code, and use this property to construct SPIs using programs capable of renegotiation. We first show that under mild conditions on players' beliefs, each player always prefers to use renegotiation. Next, we show that under similar assumptions, each player always prefers to be willing to renegotiate at least to the point at which they receive the lowest payoff they can attain in any efficient outcome. Thus subjectively optimal play guarantees players at least these payoffs, without the need for coordination on specific Pareto improvements. Lastly, we prove that renegotiation does not guarantee players any improvements on this bound.

Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.

2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司