亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large Language Models (LLMs) have been applied to various hardware design tasks, including Verilog code generation, EDA tool scripting, and RTL bug fixing. Despite this extensive exploration, LLMs are yet to be used for the task of post-synthesis metric reasoning and estimation of HDL designs. In this paper, we assess the ability of LLMs to reason about post-synthesis metrics of Verilog designs. We introduce MetRex, a large-scale dataset comprising 25,868 Verilog HDL designs and their corresponding post-synthesis metrics, namely area, delay, and static power. MetRex incorporates a Chain of Thought (CoT) template to enhance LLMs' reasoning about these metrics. Extensive experiments show that Supervised Fine-Tuning (SFT) boosts the LLM's reasoning capabilities on average by 37.0\%, 25.3\%, and 25.7\% on the area, delay, and static power, respectively. While SFT improves performance on our benchmark, it remains far from achieving optimal results, especially on complex problems. Comparing to state-of-the-art regression models, our approach delivers accurate post-synthesis predictions for 17.4\% more designs (within a 5\% error margin), in addition to offering a 1.7x speedup by eliminating the need for pre-processing. This work lays the groundwork for advancing LLM-based Verilog code metric reasoning.

相關內容

代碼(Code)是專知網的一個重要知識資料文檔板塊,旨在整理收錄論文源代碼、復現代碼,經典工程代碼等,便于用戶查閱下載使用。

Large Language Models (LLMs) have emerged as powerful tools for automating various programming tasks, including security-related ones, such as detecting and fixing vulnerabilities. Despite their promising capabilities, when required to produce or modify pre-existing code, LLMs could introduce vulnerabilities unbeknown to the programmer. When analyzing code, they could miss clear vulnerabilities or signal nonexistent ones. In this Systematic Literature Review (SLR), we aim to investigate both the security benefits and potential drawbacks of using LLMs for a variety of code-related tasks. In particular, first we focus on the types of vulnerabilities that could be introduced by LLMs, when used for producing code. Second, we analyze the capabilities of LLMs to detect and fix vulnerabilities, in any given code, and how the prompting strategy of choice impacts their performance in these two tasks. Last, we provide an in-depth analysis on how data poisoning attacks on LLMs can impact performance in the aforementioned tasks.

AI emulators for forecasting have emerged as powerful tools that can outperform conventional numerical predictions. The next frontier is to build emulators for long climate simulations with skill across a range of spatiotemporal scales, a particularly important goal for the ocean. Our work builds a skillful global emulator of the ocean component of a state-of-the-art climate model. We emulate key ocean variables, sea surface height, horizontal velocities, temperature, and salinity, across their full depth. We use a modified ConvNeXt UNet architecture trained on multidepth levels of ocean data. We show that the ocean emulator - Samudra - which exhibits no drift relative to the truth, can reproduce the depth structure of ocean variables and their interannual variability. Samudra is stable for centuries and 150 times faster than the original ocean model. Samudra struggles to capture the correct magnitude of the forcing trends and simultaneously remains stable, requiring further work.

Traditional greedy tokenization methods have been a critical step in Natural Language Processing (NLP), influencing how text is converted into tokens and directly impacting model performance. While subword tokenizers like Byte-Pair Encoding (BPE) are widely used, questions remain about their optimality across model scales and languages. In this work, we demonstrate through extensive experiments that an optimal BPE configuration significantly reduces token count compared to greedy segmentation, yielding improvements in token-saving percentages and performance benefits, particularly for smaller models. We evaluate tokenization performance across various intrinsic and extrinsic tasks, including generation and classification. Our findings suggest that compression-optimized tokenization strategies could provide substantial advantages for multilingual and low-resource language applications, highlighting a promising direction for further research and inclusive NLP.

Large language models (LLMs) have demonstrated remarkable effectiveness in text reranking through works like RankGPT, leveraging their human-like reasoning about relevance. However, supervised fine-tuning for ranking often diminishes these models' general-purpose capabilities, including the crucial reasoning abilities that make them valuable for ranking. We introduce a novel approach integrating Chain-of-Thought prompting with an SFT-DPO (Supervised Fine-Tuning followed by Direct Preference Optimization) pipeline to preserve these capabilities while improving ranking performance. Our experiments on TREC 2019 and 2020 Deep Learning datasets show that our approach outperforms the state-of-the-art RankZephyr while maintaining strong performance on the Massive Multitask Language Understanding (MMLU) benchmark, demonstrating effective preservation of general-purpose capabilities through thoughtful fine-tuning strategies. Our code and data will be publicly released upon the acceptance of the paper.

Software testing is a crucial but time-consuming aspect of software development, and recently, Large Language Models (LLMs) have gained popularity for automated test case generation. However, because LLMs are trained on vast amounts of open-source code, they often generate test cases that do not adhere to best practices and may even contain test smells (anti-patterns). To address this issue, we propose Reinforcement Learning from Static Quality Metrics (RLSQM), wherein we utilize Reinforcement Learning to generate high-quality unit tests based on static analysis-based quality metrics. First, we analyzed LLM-generated tests and show that LLMs frequently do generate undesirable test smells -- up to 37% of the time. Then, we implemented lightweight static analysis-based reward model and trained LLMs using this reward model to optimize for five code quality metrics. Our experimental results demonstrate that the RL-optimized Codex model consistently generated higher-quality test cases than the base LLM, improving quality metrics by up to 23%, and generated nearly 100% syntactically-correct code. RLSQM also outperformed GPT-4 on all code quality metrics, in spite of training a substantially cheaper Codex model. We provide insights into how reliably utilize RL to improve test generation quality and show that RLSQM is a significant step towards enhancing the overall efficiency and reliability of automated software testing. Our data are available at //doi.org/10.6084/m9.figshare.25983166.

SocialED is a comprehensive, open-source Python library designed to support social event detection (SED) tasks, integrating 19 detection algorithms and 14 diverse datasets. It provides a unified API with detailed documentation, offering researchers and practitioners a complete solution for event detection in social media. The library is designed with modularity in mind, allowing users to easily adapt and extend components for various use cases. SocialED supports a wide range of preprocessing techniques, such as graph construction and tokenization, and includes standardized interfaces for training models and making predictions. By integrating popular deep learning frameworks, SocialED ensures high efficiency and scalability across both CPU and GPU environments. The library is built adhering to high code quality standards, including unit testing, continuous integration, and code coverage, ensuring that SocialED delivers robust, maintainable software. SocialED is publicly available at \url{//github.com/RingBDStack/SocialED} and can be installed via PyPI.

Large language models have demonstrated promising performance across various software engineering tasks. While fine-tuning is a common practice to adapt these models for downstream tasks, it becomes challenging in resource-constrained environments due to increased memory requirements from growing trainable parameters in increasingly large language models. We introduce \approach, a technique to adapt large models for downstream code tasks using Code Property Graphs (CPGs). Our approach introduces a modular component called \transducer that enriches code embeddings with structural and dependency information from CPGs. The Transducer comprises two key components: Graph Vectorization Engine (GVE) and Attention-Based Fusion Layer (ABFL). GVE extracts CPGs from input source code and transforms them into graph feature vectors. ABFL then fuses those graphs feature vectors with initial code embeddings from a large language model. By optimizing these transducers for different downstream tasks, our approach enhances the models without the need to fine-tune them for specific tasks. We have evaluated \approach on three downstream tasks: code summarization, assert generation, and code translation. Our results demonstrate competitive performance compared to full parameter fine-tuning while reducing up to 99\% trainable parameters to save memory. \approach also remains competitive against other fine-tuning approaches (e.g., LoRA, Prompt-Tuning, Prefix-Tuning) while using only 1.5\%-80\% of their trainable parameters. Our findings show that integrating structural and dependency information through Transducer Tuning enables more efficient model adaptation, making it easier for users to adapt large models in resource-constrained settings.

Due to their multimodal capabilities, Vision-Language Models (VLMs) have found numerous impactful applications in real-world scenarios. However, recent studies have revealed that VLMs are vulnerable to image-based adversarial attacks, particularly targeted adversarial images that manipulate the model to generate harmful content specified by the adversary. Current attack methods rely on predefined target labels to create targeted adversarial attacks, which limits their scalability and applicability for large-scale robustness evaluations. In this paper, we propose AnyAttack, a self-supervised framework that generates targeted adversarial images for VLMs without label supervision, allowing any image to serve as a target for the attack. Our framework employs the pre-training and fine-tuning paradigm, with the adversarial noise generator pre-trained on the large-scale LAION-400M dataset. This large-scale pre-training endows our method with powerful transferability across a wide range of VLMs. Extensive experiments on five mainstream open-source VLMs (CLIP, BLIP, BLIP2, InstructBLIP, and MiniGPT-4) across three multimodal tasks (image-text retrieval, multimodal classification, and image captioning) demonstrate the effectiveness of our attack. Additionally, we successfully transfer AnyAttack to multiple commercial VLMs, including Google Gemini, Claude Sonnet, Microsoft Copilot and OpenAI GPT. These results reveal an unprecedented risk to VLMs, highlighting the need for effective countermeasures.

The commonly used Reinforcement Learning (RL) model, MDPs (Markov Decision Processes), has a basic premise that rewards depend on the current state and action only. However, many real-world tasks are non-Markovian, which has long-term memory and dependency. The reward sparseness problem is further amplified in non-Markovian scenarios. Hence learning a non-Markovian task (NMT) is inherently more difficult than learning a Markovian one. In this paper, we propose a novel \textbf{Par}allel and \textbf{Mod}ular RL framework, ParMod, specifically for learning NMTs specified by temporal logic. With the aid of formal techniques, the NMT is modulaized into a series of sub-tasks based on the automaton structure (equivalent to its temporal logic counterpart). On this basis, sub-tasks will be trained by a group of agents in a parallel fashion, with one agent handling one sub-task. Besides parallel training, the core of ParMod lies in: a flexible classification method for modularizing the NMT, and an effective reward shaping method for improving the sample efficiency. A comprehensive evaluation is conducted on several challenging benchmark problems with respect to various metrics. The experimental results show that ParMod achieves superior performance over other relevant studies. Our work thus provides a good synergy among RL, NMT and temporal logic.

Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.

北京阿比特科技有限公司