亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a methodology for planting watermarks in text from an autoregressive language model that are robust to perturbations without changing the distribution over text up to a certain maximum generation budget. We generate watermarked text by mapping a sequence of random numbers -- which we compute using a randomized watermark key -- to a sample from the language model. To detect watermarked text, any party who knows the key can align the text to the random number sequence. We instantiate our watermark methodology with two sampling schemes: inverse transform sampling and exponential minimum sampling. We apply these watermarks to three language models -- OPT-1.3B, LLaMA-7B and Alpaca-7B -- to experimentally validate their statistical power and robustness to various paraphrasing attacks. Notably, for both the OPT-1.3B and LLaMA-7B models, we find we can reliably detect watermarked text ($p \leq 0.01$) from $35$ tokens even after corrupting between $40$-$50$\% of the tokens via random edits (i.e., substitutions, insertions or deletions). For the Alpaca-7B model, we conduct a case study on the feasibility of watermarking responses to typical user instructions. Due to the lower entropy of the responses, detection is more difficult: around $25\%$ of the responses -- whose median length is around $100$ tokens -- are detectable with $p \leq 0.01$, and the watermark is also less robust to certain automated paraphrasing attacks we implement.

相關內容

Pretrained language models can be effectively stimulated by textual prompts or demonstrations, especially in low-data scenarios. Recent works have focused on automatically searching discrete or continuous prompts or optimized verbalizers, yet studies for the demonstration are still limited. Concretely, the demonstration examples are crucial for an excellent final performance of prompt-tuning. In this paper, we propose a novel pluggable, extensible, and efficient approach named contrastive demonstration tuning, which is free of demonstration sampling. Furthermore, the proposed approach can be: (i) Plugged into any previous prompt-tuning approaches; (ii) Extended to widespread classification tasks with a large number of categories. Experimental results on 16 datasets illustrate that our method integrated with previous approaches LM-BFF and P-tuning can yield better performance. Code is available in //github.com/zjunlp/PromptKG/tree/main/research/Demo-Tuning.

We propose a novel sensitivity analysis framework for linear estimands when identification failure can be viewed as seeing the wrong distribution of outcomes. Our family of assumptions bounds the density ratio between the observed and true conditional outcome distribution. This framework links naturally to selection models, generalizes existing assumptions for the Regression Discontinuity (RD) and Inverse Propensity Weighting (IPW) estimand, and provides a novel nonparametric perspective on violations of identification assumptions for ordinary least squares (OLS). Our sharp partial identification results extend existing results for IPW to cover other estimands and assumptions that allow even unbounded likelihood ratios, yielding a simple and unified characterization of bounds under assumptions like the c-dependence assumption of Masten and Poirier (2018). The sharp bounds can be written as a simple closed form moment of the data, the nuisance functions estimated in the primary analysis, and the conditional outcome quantile function. We find our method does well in simulations even when targeting a discontinuous and nearly infinite bound.

Diffusion models have shown promising results in speech enhancement, using a task-adapted diffusion process for the conditional generation of clean speech given a noisy mixture. However, at test time, the neural network used for score estimation is called multiple times to solve the iterative reverse process. This results in a slow inference process and causes discretization errors that accumulate over the sampling trajectory. In this paper, we address these limitations through a two-stage training approach. In the first stage, we train the diffusion model the usual way using the generative denoising score matching loss. In the second stage, we compute the enhanced signal by solving the reverse process and compare the resulting estimate to the clean speech target using a predictive loss. We show that using this second training stage enables achieving the same performance as the baseline model using only 5 function evaluations instead of 60 function evaluations. While the performance of usual generative diffusion algorithms drops dramatically when lowering the number of function evaluations (NFEs) to obtain single-step diffusion, we show that our proposed method keeps a steady performance and therefore largely outperforms the diffusion baseline in this setting and also generalizes better than its predictive counterpart.

We propose the new problem of choosing which dense retrieval model to use when searching on a new collection for which no labels are available, i.e. in a zero-shot setting. Many dense retrieval models are readily available. Each model however is characterized by very differing search effectiveness -- not just on the test portion of the datasets in which the dense representations have been learned but, importantly, also across different datasets for which data was not used to learn the dense representations. This is because dense retrievers typically require training on a large amount of labeled data to achieve satisfactory search effectiveness in a specific dataset or domain. Moreover, effectiveness gains obtained by dense retrievers on datasets for which they are able to observe labels during training, do not necessarily generalise to datasets that have not been observed during training. This is however a hard problem: through empirical experimentation we show that methods inspired by recent work in unsupervised performance evaluation with the presence of domain shift in the area of computer vision and machine learning are not effective for choosing highly performing dense retrievers in our setup. The availability of reliable methods for the selection of dense retrieval models in zero-shot settings that do not require the collection of labels for evaluation would allow to streamline the widespread adoption of dense retrieval. This is therefore an important new problem we believe the information retrieval community should consider. Implementation of methods, along with raw result files and analysis scripts are made publicly available at //www.github.com/anonymized.

Loop closing and relocalization are crucial techniques to establish reliable and robust long-term SLAM by addressing pose estimation drift and degeneration. This article begins by formulating loop closing and relocalization within a unified framework. Then, we propose a novel multi-head network LCR-Net to tackle both tasks effectively. It exploits novel feature extraction and pose-aware attention mechanism to precisely estimate similarities and 6-DoF poses between pairs of LiDAR scans. In the end, we integrate our LCR-Net into a SLAM system and achieve robust and accurate online LiDAR SLAM in outdoor driving environments. We thoroughly evaluate our LCR-Net through three setups derived from loop closing and relocalization, including candidate retrieval, closed-loop point cloud registration, and continuous relocalization using multiple datasets. The results demonstrate that LCR-Net excels in all three tasks, surpassing the state-of-the-art methods and exhibiting a remarkable generalization ability. Notably, our LCR-Net outperforms baseline methods without using a time-consuming robust pose estimator, rendering it suitable for online SLAM applications. To our best knowledge, the integration of LCR-Net yields the first LiDAR SLAM with the capability of deep loop closing and relocalization. The implementation of our methods will be made open-source.

Fairness problems in recommender systems often have a complexity in practice that is not adequately captured in simplified research formulations. A social choice formulation of the fairness problem, operating within a multi-agent architecture of fairness concerns, offers a flexible and multi-aspect alternative to fairness-aware recommendation approaches. Leveraging social choice allows for increased generality and the possibility of tapping into well-studied social choice algorithms for resolving the tension between multiple, competing fairness concerns. This paper explores a range of options for choice mechanisms in multi-aspect fairness applications using both real and synthetic data and shows that different classes of choice and allocation mechanisms yield different but consistent fairness / accuracy tradeoffs. We also show that a multi-agent formulation offers flexibility in adapting to user population dynamics.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.

北京阿比特科技有限公司