亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In long document controllable summarization, where labeled data is scarce, pretrained models struggle to adapt to the task and effectively respond to user queries. In this paper, we introduce Socratic pretraining, a question-driven, unsupervised pretraining objective specifically designed to improve controllability in summarization tasks. By training a model to generate and answer relevant questions in a given context, Socratic pretraining enables the model to more effectively adhere to user-provided queries and identify relevant content to be summarized. We demonstrate the effectiveness of this approach through extensive experimentation on two summarization domains, short stories and dialogue, and multiple control strategies: keywords, questions, and factoid QA pairs. Our pretraining method relies only on unlabeled documents and a question generation system and outperforms pre-finetuning approaches that use additional supervised data. Furthermore, our results show that Socratic pretraining cuts task-specific labeled data requirements in half, is more faithful to user-provided queries, and achieves state-of-the-art performance on QMSum and SQuALITY.

相關內容

古希臘(la)哲學(xue)家,和其(qi)學(xue)生柏拉(la)圖(tu)及柏拉(la)圖(tu)的學(xue)生亞里士多德被并(bing)稱(cheng)為希臘(la)三哲人。他(ta)被后人廣(guang)泛認(ren)為是西(xi)方哲學(xue)的奠基者。 蘇格拉(la)底相信「理想存(cun)在于(yu)一個(ge)只有(you)智(zhi)者才(cai)能了(le)解的世界」。

Foundation models could eventually introduce several pathways for undermining state security: accidents, inadvertent escalation, unintentional conflict, the proliferation of weapons, and the interference with human diplomacy are just a few on a long list. The Confidence-Building Measures for Artificial Intelligence workshop hosted by the Geopolitics Team at OpenAI and the Berkeley Risk and Security Lab at the University of California brought together a multistakeholder group to think through the tools and strategies to mitigate the potential risks introduced by foundation models to international security. Originating in the Cold War, confidence-building measures (CBMs) are actions that reduce hostility, prevent conflict escalation, and improve trust between parties. The flexibility of CBMs make them a key instrument for navigating the rapid changes in the foundation model landscape. Participants identified the following CBMs that directly apply to foundation models and which are further explained in this conference proceedings: 1. crisis hotlines 2. incident sharing 3. model, transparency, and system cards 4. content provenance and watermarks 5. collaborative red teaming and table-top exercises and 6. dataset and evaluation sharing. Because most foundation model developers are non-government entities, many CBMs will need to involve a wider stakeholder community. These measures can be implemented either by AI labs or by relevant government actors.

Constructing supervised machine learning models for real-world video analysis require substantial labeled data, which is costly to acquire due to scarce domain expertise and laborious manual inspection. While data programming shows promise in generating labeled data at scale with user-defined labeling functions, the high dimensional and complex temporal information in videos poses additional challenges for effectively composing and evaluating labeling functions. In this paper, we propose VideoPro, a visual analytics approach to support flexible and scalable video data programming for model steering with reduced human effort. We first extract human-understandable events from videos using computer vision techniques and treat them as atomic components of labeling functions. We further propose a two-stage template mining algorithm that characterizes the sequential patterns of these events to serve as labeling function templates for efficient data labeling. The visual interface of VideoPro facilitates multifaceted exploration, examination, and application of the labeling templates, allowing for effective programming of video data at scale. Moreover, users can monitor the impact of programming on model performance and make informed adjustments during the iterative programming process. We demonstrate the efficiency and effectiveness of our approach with two case studies and expert interviews.

Statistical prediction models are often trained on data from different probability distributions than their eventual use cases. One approach to proactively prepare for these shifts harnesses the intuition that causal mechanisms should remain invariant between environments. Here we focus on a challenging setting in which the causal and anticausal variables of the target are unobserved. Leaning on information theory, we develop feature selection and engineering techniques for the observed downstream variables that act as proxies. We identify proxies that help to build stable models and moreover utilize auxiliary training tasks to answer counterfactual questions that extract stability-enhancing information from proxies. We demonstrate the effectiveness of our techniques on synthetic and real data.

Deep generative models, which target reproducing the given data distribution to produce novel samples, have made unprecedented advancements in recent years. Their technical breakthroughs have enabled unparalleled quality in the synthesis of visual content. However, one critical prerequisite for their tremendous success is the availability of a sufficient number of training samples, which requires massive computation resources. When trained on limited data, generative models tend to suffer from severe performance deterioration due to overfitting and memorization. Accordingly, researchers have devoted considerable attention to develop novel models that are capable of generating plausible and diverse images from limited training data recently. Despite numerous efforts to enhance training stability and synthesis quality in the limited data scenarios, there is a lack of a systematic survey that provides 1) a clear problem definition, critical challenges, and taxonomy of various tasks; 2) an in-depth analysis on the pros, cons, and remain limitations of existing literature; as well as 3) a thorough discussion on the potential applications and future directions in the field of image synthesis under limited data. In order to fill this gap and provide a informative introduction to researchers who are new to this topic, this survey offers a comprehensive review and a novel taxonomy on the development of image synthesis under limited data. In particular, it covers the problem definition, requirements, main solutions, popular benchmarks, and remain challenges in a comprehensive and all-around manner.

Recently, there has been growing interest in extending the context length of instruction-following models in order to effectively process single-turn long input (e.g. summarizing a paper) and conversations with more extensive histories. While proprietary models such as GPT-4 and Claude have shown significant strides in handling extremely lengthy input, open-sourced models are still in the early stages of experimentation. It also remains unclear whether extending the context can offer substantial gains over traditional methods such as retrieval, and to what extent it improves upon their regular counterparts in practical downstream tasks. To address this challenge, we propose instituting standardized evaluation for long context language models. Concretely, we develop L-Eval which contains 411 long documents and over 2,000 human-labeled query-response pairs encompassing areas such as law, finance, school lectures, lengthy conversations, news, long-form novels, and meetings. L-Eval also adopts diverse evaluation methods and instruction styles, enabling a more reliable assessment of Long Context Language Models (LCLMs). Our findings indicate that while open-source models typically lag behind commercial models, they still exhibit impressive performance compared with their regular versions. LLaMA2-13B achieves the best results on both open-ended tasks (win \textbf{42}\% vs turbo-16k-0613) and closed-ended tasks with only 4k context length. We release our new evaluation suite, code, and all generation results including predictions from all open-sourced LCLMs, GPT4-32k, Cluade-100k at {\url{//github.com/OpenLMLab/LEval}}.

Data-free quantization can potentially address data privacy and security concerns in model compression, and thus has been widely investigated. Recently, PSAQ-ViT designs a relative value metric, patch similarity, to generate data from pre-trained vision transformers (ViTs), achieving the first attempt at data-free quantization for ViTs. In this paper, we propose PSAQ-ViT V2, a more accurate and general data-free quantization framework for ViTs, built on top of PSAQ-ViT. More specifically, following the patch similarity metric in PSAQ-ViT, we introduce an adaptive teacher-student strategy, which facilitates the constant cyclic evolution of the generated samples and the quantized model (student) in a competitive and interactive fashion under the supervision of the full-precision model (teacher), thus significantly improving the accuracy of the quantized model. Moreover, without the auxiliary category guidance, we employ the task- and model-independent prior information, making the general-purpose scheme compatible with a broad range of vision tasks and models. Extensive experiments are conducted on various models on image classification, object detection, and semantic segmentation tasks, and PSAQ-ViT V2, with the naive quantization strategy and without access to real-world data, consistently achieves competitive results, showing potential as a powerful baseline on data-free quantization for ViTs. For instance, with Swin-S as the (backbone) model, 8-bit quantization reaches 82.13 top-1 accuracy on ImageNet, 50.9 box AP and 44.1 mask AP on COCO, and 47.2 mIoU on ADE20K. We hope that accurate and general PSAQ-ViT V2 can serve as a potential and practice solution in real-world applications involving sensitive data. Code is released and merged at: //github.com/zkkli/PSAQ-ViT.

Distribution data refers to a data set where each sample is represented as a probability distribution, a subject area receiving burgeoning interest in the field of statistics. Although several studies have developed distribution-to-distribution regression models for univariate variables, the multivariate scenario remains under-explored due to technical complexities. In this study, we introduce models for regression from one Gaussian distribution to another, utilizing the Wasserstein metric. These models are constructed using the geometry of the Wasserstein space, which enables the transformation of Gaussian distributions into components of a linear matrix space. Owing to their linear regression frameworks, our models are intuitively understandable, and their implementation is simplified because of the optimal transport problem's analytical solution between Gaussian distributions. We also explore a generalization of our models to encompass non-Gaussian scenarios. We establish the convergence rates of in-sample prediction errors for the empirical risk minimizations in our models. In comparative simulation experiments, our models demonstrate superior performance over a simpler alternative method that transforms Gaussian distributions into matrices. We present an application of our methodology using weather data for illustration purposes.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

Generic object detection, aiming at locating object instances from a large number of predefined categories in natural images, is one of the most fundamental and challenging problems in computer vision. Deep learning techniques have emerged in recent years as powerful methods for learning feature representations directly from data, and have led to remarkable breakthroughs in the field of generic object detection. Given this time of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field brought by deep learning techniques. More than 250 key contributions are included in this survey, covering many aspects of generic object detection research: leading detection frameworks and fundamental subproblems including object feature representation, object proposal generation, context information modeling and training strategies; evaluation issues, specifically benchmark datasets, evaluation metrics, and state of the art performance. We finish by identifying promising directions for future research.

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

北京阿比特科技有限公司