The field of efficient Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges. Although the field has expanded and is vibrant, there hasn't been a concise framework that analyzes the various methods of LLM Inference to provide a clear understanding of this domain. Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model for systematic analysis of LLM inference techniques. This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems, such as why LLMs are memory-bound, how much memory and computation they need, and how to choose the right hardware. We systematically collate the latest advancements in efficient LLM inference, covering crucial areas such as model compression (e.g., Knowledge Distillation and Quantization), algorithm improvements (e.g., Early Exit and Mixture-of-Expert), and both hardware and system-level enhancements. Our survey stands out by analyzing these methods with roofline model, helping us understand their impact on memory access and computation. This distinctive approach not only showcases the current research landscape but also delivers valuable insights for practical implementation, positioning our work as an indispensable resource for researchers new to the field as well as for those seeking to deepen their understanding of efficient LLM deployment. The analyze tool, LLM-Viewer, is open-sourced.
Evaluating the alignment capabilities of large Vision-Language Models (VLMs) is essential for determining their effectiveness as helpful assistants. However, existing benchmarks primarily focus on basic abilities using nonverbal methods, such as yes-no and multiple-choice questions. In this paper, we address this gap by introducing AlignMMBench, a comprehensive alignment benchmark specifically designed for emerging Chinese VLMs. This benchmark is meticulously curated from real-world scenarios and Chinese Internet sources, encompassing thirteen specific tasks across three categories, and includes both single-turn and multi-turn dialogue scenarios. Incorporating a prompt rewrite strategy, AlignMMBench encompasses 1,054 images and 4,978 question-answer pairs. To facilitate the evaluation pipeline, we propose CritiqueVLM, a rule-calibrated evaluator that exceeds GPT-4's evaluation ability. Finally, we report the performance of representative VLMs on AlignMMBench, offering insights into the capabilities and limitations of different VLM architectures. All evaluation codes and data are available on //alignmmbench.github.io.
We present Diffusion Soup, a compartmentalization method for Text-to-Image Generation that averages the weights of diffusion models trained on sharded data. By construction, our approach enables training-free continual learning and unlearning with no additional memory or inference costs, since models corresponding to data shards can be added or removed by re-averaging. We show that Diffusion Soup samples from a point in weight space that approximates the geometric mean of the distributions of constituent datasets, which offers anti-memorization guarantees and enables zero-shot style mixing. Empirically, Diffusion Soup outperforms a paragon model trained on the union of all data shards and achieves a 30% improvement in Image Reward (.34 $\to$ .44) on domain sharded data, and a 59% improvement in IR (.37 $\to$ .59) on aesthetic data. In both cases, souping also prevails in TIFA score (respectively, 85.5 $\to$ 86.5 and 85.6 $\to$ 86.8). We demonstrate robust unlearning -- removing any individual domain shard only lowers performance by 1% in IR (.45 $\to$ .44) -- and validate our theoretical insights on anti-memorization using real data. Finally, we showcase Diffusion Soup's ability to blend the distinct styles of models finetuned on different shards, resulting in the zero-shot generation of hybrid styles.
Software vulnerabilities are a serious and crucial concern. Typically, in a program or function consisting of hundreds or thousands of source code statements, there are only a few statements causing the corresponding vulnerabilities. Most current approaches to vulnerability labelling are done on a function or program level by experts with the assistance of machine learning tools. Extending this approach to the code statement level is much more costly and time-consuming and remains an open problem. In this paper, we propose a novel end-to-end deep learning-based approach to identify the vulnerability-relevant code statements of a specific function. Inspired by the specific structures observed in real-world vulnerable code, we first leverage mutual information for learning a set of latent variables representing the relevance of the source code statements to the corresponding function's vulnerability. We then propose novel clustered spatial contrastive learning in order to further improve the representation learning and the robust selection process of vulnerability-relevant code statements. Experimental results on real-world datasets of 200k+ C/C++ functions show the superiority of our method over other state-of-the-art baselines. In general, our method obtains a higher performance in VCP, VCA, and Top-10 ACC measures of between 3% to 14% over the baselines when running on real-world datasets in an unsupervised setting. Our released source code samples are publicly available at \href{//github.com/vannguyennd/livuitcl}{//github.com/vannguyennd/livuitcl.}
Integrated sensing and communication (ISAC) networks are investigated with the objective of effectively balancing the sensing and communication (S&C) performance at the network level. Through the simultaneous utilization of multi-point (CoMP) coordinated joint transmission and distributed multiple-input multiple-output (MIMO) radar techniques, we propose an innovative networked ISAC scheme, where multiple transceivers are employed for collaboratively enhancing the S&C services. Then, the potent tool of stochastic geometry is exploited for characterizing the S&C performance, which allows us to illuminate the key cooperative dependencies in the ISAC network and optimize salient network-level parameters. Remarkably, the Cramer-Rao lower bound (CRLB) expression of the localization accuracy derived unveils a significant finding: Deploying N ISAC transceivers yields an enhanced average cooperative sensing performance across the entire network, in accordance with the ln^2N scaling law. Crucially, this scaling law is less pronounced in comparison to the performance enhancement of N^2 achieved when the transceivers are equidistant from the target, which is primarily due to the substantial path loss from the distant base stations (BSs) and leads to reduced contributions to sensing performance gain. Moreover, we derive a tight expression of the communication rate, and present a low-complexity algorithm to determine the optimal cooperative cluster size. Based on our expression derived for the S&C performance, we formulate the optimization problem of maximizing the network performance in terms of two joint S&C metrics. To this end, we jointly optimize the cooperative BS cluster sizes and the transmit power to strike a flexible tradeoff between the S&C performance.
With the recent advancement in large language models (LLMs), there is a growing interest in combining LLMs with multimodal learning. Previous surveys of multimodal large language models (MLLMs) mainly focus on multimodal understanding. This survey elaborates on multimodal generation and editing across various domains, comprising image, video, 3D, and audio. Specifically, we summarize the notable advancements with milestone works in these fields and categorize these studies into LLM-based and CLIP/T5-based methods. Then, we summarize the various roles of LLMs in multimodal generation and exhaustively investigate the critical technical components behind these methods and the multimodal datasets utilized in these studies. Additionally, we dig into tool-augmented multimodal agents that can leverage existing generative models for human-computer interaction. Lastly, we discuss the advancements in the generative AI safety field, investigate emerging applications, and discuss future prospects. Our work provides a systematic and insightful overview of multimodal generation and processing, which is expected to advance the development of Artificial Intelligence for Generative Content (AIGC) and world models. A curated list of all related papers can be found at //github.com/YingqingHe/Awesome-LLMs-meet-Multimodal-Generation
Graph Neural Networks (GNNs) have advanced the field of machine learning by utilizing graph-structured data, which is ubiquitous in the real world. GNNs have applications in various fields, ranging from social network analysis to drug discovery. GNN training is strenuous, requiring significant computational resources and human expertise. It makes a trained GNN an indispensable Intellectual Property (IP) for its owner. Recent studies have shown GNNs to be vulnerable to model-stealing attacks, which raises concerns over IP rights protection. Watermarking has been shown to be effective at protecting the IP of a GNN model. Existing efforts to develop a watermarking scheme for GNNs have only focused on the node classification and the graph classification tasks. To the best of our knowledge, we introduce the first-ever watermarking scheme for GNNs tailored to the Link Prediction (LP) task. We call our proposed watermarking scheme GENIE (watermarking Graph nEural Networks for lInk prEdiction). We design GENIE using a novel backdoor attack to create a trigger set for two key methods of LP: (1) node representation-based and (2) subgraph-based. In GENIE, the watermark is embedded into the GNN model by training it on both the trigger set and a modified training set, resulting in a watermarked GNN model. To assess a suspect model, we verify the watermark against the trigger set. We extensively evaluate GENIE across 3 model architectures (i.e., SEAL, GCN, and GraphSAGE) and 7 real-world datasets. Furthermore, we validate the robustness of GENIE against 11 state-of-the-art watermark removal techniques and 3 model extraction attacks. We also demonstrate that GENIE is robust against ownership piracy attack. Our ownership demonstration scheme statistically guarantees both False Positive Rate (FPR) and False Negative Rate (FNR) to be less than $10^{-6}$.
The interpolative decomposition (ID) aims to construct a low-rank approximation formed by a basis consisting of row/column skeletons in the original matrix and a corresponding interpolation matrix. This work explores fast and accurate ID algorithms from five essential perspectives for empirical performance: (a) skeleton complexity that measures the minimum possible ID rank for a given low-rank approximation error, (b) asymptotic complexity in FLOPs, (c) parallelizability of the computational bottleneck as matrix-matrix multiplications, (d) error-revealing property that enables automatic rank detection for given error tolerances without prior knowledge of target ranks, (e) ID-revealing property that ensures efficient construction of the optimal interpolation matrix after selecting the skeletons. While a broad spectrum of algorithms have been developed to optimize parts of the aforementioned perspectives, practical ID algorithms proficient in all perspectives remain absent. To fill in the gap, we introduce robust blockwise random pivoting (RBRP) that is parallelizable, error-revealing, and exactly ID-revealing, with comparable skeleton and asymptotic complexities to the best existing ID algorithms in practice. Through extensive numerical experiments on various synthetic and natural datasets, we demonstrate the appealing empirical performance of RBRP from the five perspectives above, as well as the robustness of RBRP to adversarial inputs.
Rationality is the quality of being guided by reason, characterized by logical thinking and decision-making that align with evidence and logical rules. This quality is essential for effective problem-solving, as it ensures that solutions are well-founded and systematically derived. Despite the advancements of large language models (LLMs) in generating human-like text with remarkable accuracy, they present biases inherited from the training data, inconsistency across different contexts, and difficulty understanding complex scenarios involving multiple layers of context. Therefore, recent research attempts to leverage the strength of multiple agents working collaboratively with various types of data and tools for enhanced consistency and reliability. To that end, this paper aims to understand whether multi-modal and multi-agent systems are advancing toward rationality by surveying the state-of-the-art works, identifying advancements over single-agent and single-modal systems in terms of rationality, and discussing open problems and future directions. We maintain an open repository at //github.com/bowen-upenn/MMMA_Rationality.
Besides entity-centric knowledge, usually organized as Knowledge Graph (KG), events are also an essential kind of knowledge in the world, which trigger the spring up of event-centric knowledge representation form like Event KG (EKG). It plays an increasingly important role in many machine learning and artificial intelligence applications, such as intelligent search, question-answering, recommendation, and text generation. This paper provides a comprehensive survey of EKG from history, ontology, instance, and application views. Specifically, to characterize EKG thoroughly, we focus on its history, definitions, schema induction, acquisition, related representative graphs/systems, and applications. The development processes and trends are studied therein. We further summarize perspective directions to facilitate future research on EKG.
The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.