With the advent of low-power ultra-fast hardware and GPUs, virtual reality (VR) has gained a lot of prominence in the last few years and is being used in various areas such as education, entertainment, scientific visualization, and computer-aided design. VR-based applications are highly interactive, and one of the most important performance metrics for these applications is the motion-to-photon-delay (MPD). MPD is the delay from the users head movement to the time at which the image gets updated on the VR screen. Since the human visual system can even detect an error of a few pixels (very spatially sensitive), the MPD should be as small as possible. Popular VR vendors use the GPU-accelerated Asynchronous Time Warp (ATW) algorithm to reduce the MPD. ATW reduces the MPD if and only if the warping operation finishes just before the display refreshes. However, due to the competition between applications for the shared GPU, the GPU-accelerated ATW algorithm suffers from an unpredictable ATW latency, making it challenging to find the ideal time instance for starting the time warp and ensuring that it completes with the least amount of lag relative to the screen refresh. Hence, the state-of-the-art is to use a separate hardware unit for the time warping operation. Our approach, PredATW, uses an ML-based predictor to predict the ATW latency for a VR application, and then schedule it as late as possible. This is the first work to do so. Our predictor achieves an error of 0.77 ms across several popular VR applications for predicting the ATW latency. As compared to the baseline architecture, we reduce deadline misses by 73.1%.
In this paper we prove convergence rates for time discretisation schemes for semi-linear stochastic evolution equations with additive or multiplicative Gaussian noise, where the leading operator $A$ is the generator of a strongly continuous semigroup $S$ on a Hilbert space $X$, and the focus is on non-parabolic problems. The main results are optimal bounds for the uniform strong error $$\mathrm{E}_{k}^{\infty} := \Big(\mathbb{E} \sup_{j\in \{0, \ldots, N_k\}} \|U(t_j) - U^j\|^p\Big)^{1/p},$$ where $p \in [2,\infty)$, $U$ is the mild solution, $U^j$ is obtained from a time discretisation scheme, $k$ is the step size, and $N_k = T/k$. The usual schemes such as splitting/exponential Euler, implicit Euler, and Crank-Nicolson, etc.\ are included as special cases. Under conditions on the nonlinearity and the noise we show - $\mathrm{E}_{k}^{\infty}\lesssim k \log(T/k)$ (linear equation, additive noise, general $S$); - $\mathrm{E}_{k}^{\infty}\lesssim \sqrt{k} \log(T/k)$ (nonlinear equation, multiplicative noise, contractive $S$); - $\mathrm{E}_{k}^{\infty}\lesssim k \log(T/k)$ (nonlinear wave equation, multiplicative noise). The logarithmic factor can be removed if the splitting scheme is used with a (quasi)-contractive $S$. The obtained bounds coincide with the optimal bounds for SDEs. Most of the existing literature is concerned with bounds for the simpler pointwise strong error $$\mathrm{E}_k:=\bigg(\sup_{j\in \{0,\ldots,N_k\}}\mathbb{E} \|U(t_j) - U^{j}\|^p\bigg)^{1/p}.$$ Applications to Maxwell equations, Schr\"odinger equations, and wave equations are included. For these equations our results improve and reprove several existing results with a unified method.
New emerging technologies powered by Artificial Intelligence (AI) have the potential to disruptively transform our societies for the better. In particular, data-driven learning approaches (i.e., Machine Learning (ML)) have been a true revolution in the advancement of multiple technologies in various application domains. But at the same time there is growing concern about certain intrinsic characteristics of these methodologies that carry potential risks to both safety and fundamental rights. Although there are mechanisms in the adoption process to minimize these risks (e.g., safety regulations), these do not exclude the possibility of harm occurring, and if this happens, victims should be able to seek compensation. Liability regimes will therefore play a key role in ensuring basic protection for victims using or interacting with these systems. However, the same characteristics that make AI systems inherently risky, such as lack of causality, opacity, unpredictability or their self and continuous learning capabilities, may lead to considerable difficulties when it comes to proving causation. This paper presents three case studies, as well as the methodology to reach them, that illustrate these difficulties. Specifically, we address the cases of cleaning robots, delivery drones and robots in education. The outcome of the proposed analysis suggests the need to revise liability regimes to alleviate the burden of proof on victims in cases involving AI technologies.
In today's Internet, HTTP Adaptive Streaming (HAS) is the mainstream standard for video streaming, which switches the bitrate of the video content based on an Adaptive BitRate (ABR) algorithm. An effective Quality of Experience (QoE) assessment metric can provide crucial feedback to an ABR algorithm. However, predicting such real-time QoE on the client side is challenging. The QoE prediction requires high consistency with the Human Visual System (HVS), low latency, and blind assessment, which are difficult to realize together. To address this challenge, we analyzed various characteristics of HAS systems and propose a non-uniform sampling metric to reduce time complexity. Furthermore, we design an effective QoE metric that integrates resolution and rebuffering time as the Quality of Service (QoS), as well as spatiotemporal output from a deep neural network and specific switching events as content information. These reward and penalty features are regressed into quality scores with a Support Vector Regression (SVR) model. Experimental results show that the accuracy of our metric outperforms the mainstream blind QoE metrics by 0.3, and its computing time is only 60\% of the video playback, indicating that the proposed metric is capable of providing real-time guidance to ABR algorithms and improving the overall performance of HAS.
With the increasing complexity of software permeating critical domains such as autonomous driving, new challenges are emerging in the ways the engineering of these systems needs to be rethought. Autonomous driving is expected to continue gradually overtaking all critical driving functions, which is adding to the complexity of the certification of autonomous driving systems. As a response, certification authorities have already started introducing strategies for the certification of autonomous vehicles and their software. But even with these new approaches, the certification procedures are not fully catching up with the dynamism and unpredictability of future autonomous systems, and thus may not necessarily guarantee compliance with all requirements imposed on these systems. In this paper, we identified a number of issues with the proposed certification strategies, which may impact the systems substantially. For instance, we emphasize the lack of adequate reflection on software changes occurring in constantly changing systems, or low support for systems' cooperation needed for the management of coordinated moves. Other shortcomings concern the narrow focus of the awarded certification by neglecting aspects such as the ethical behavior of autonomous software systems. The contribution of this paper is threefold. First, we discuss the motivation for the need to modify the current certification processes for autonomous driving systems. Second, we analyze current international standards used in the certification processes towards requirements derived from the requirements laid on dynamic software ecosystems and autonomous systems themselves. Third, we outline a concept for incorporating the missing parts into the certification procedure.
We present DiffXPBD, a novel and efficient analytical formulation for the differentiable position-based simulation of compliant constrained dynamics (XPBD). Our proposed method allows computation of gradients of numerous parameters with respect to a goal function simultaneously leveraging a performant simulation model. The method is efficient, thus enabling differentiable simulations of high resolution geometries and degrees of freedom (DoFs). Collisions are naturally included in the framework. Our differentiable model allows a user to easily add additional optimization variables. Every control variable gradient requires the computation of only a few partial derivatives which can be computed using automatic differentiation code. We demonstrate the efficacy of the method with examples such as elastic material parameter estimation, initial value optimization, optimizing for underlying body shape and pose by only observing the clothing, and optimizing a time-varying external force sequence to match sparse keyframe shapes at specific times. Our approach demonstrates excellent efficiency and we demonstrate this on high resolution meshes with optimizations involving over 26 million degrees of freedom. Making an existing solver differentiable requires only a few modifications and the model is compatible with both modern CPU and GPU multi-core hardware.
The deep neural network (DNN) models for object detection using camera images are widely adopted in autonomous vehicles. However, DNN models are shown to be susceptible to adversarial image perturbations. In the existing methods of generating the adversarial image perturbations, optimizations take each incoming image frame as the decision variable to generate an image perturbation. Therefore, given a new image, the typically computationally-expensive optimization needs to start over as there is no learning between the independent optimizations. Very few approaches have been developed for attacking online image streams while considering the underlying physical dynamics of autonomous vehicles, their mission, and the environment. We propose a multi-level stochastic optimization framework that monitors an attacker's capability of generating the adversarial perturbations. Based on this capability level, a binary decision attack/not attack is introduced to enhance the effectiveness of the attacker. We evaluate our proposed multi-level image attack framework using simulations for vision-guided autonomous vehicles and actual tests with a small indoor drone in an office environment. The results show our method's capability to generate the image attack in real-time while monitoring when the attacker is proficient given state estimates.
Biological sensing and processing is asynchronous and sparse, leading to low-latency and energy-efficient perception and action. In robotics, neuromorphic hardware for event-based vision and spiking neural networks promises to exhibit similar characteristics. However, robotic implementations have been limited to basic tasks with low-dimensional sensory inputs and motor actions due to the restricted network size in current embedded neuromorphic processors and the difficulties of training spiking neural networks. Here, we present the first fully neuromorphic vision-to-control pipeline for controlling a freely flying drone. Specifically, we train a spiking neural network that accepts high-dimensional raw event-based camera data and outputs low-level control actions for performing autonomous vision-based flight. The vision part of the network, consisting of five layers and 28.8k neurons, maps incoming raw events to ego-motion estimates and is trained with self-supervised learning on real event data. The control part consists of a single decoding layer and is learned with an evolutionary algorithm in a drone simulator. Robotic experiments show a successful sim-to-real transfer of the fully learned neuromorphic pipeline. The drone can accurately follow different ego-motion setpoints, allowing for hovering, landing, and maneuvering sideways$\unicode{x2014}$even while yawing at the same time. The neuromorphic pipeline runs on board on Intel's Loihi neuromorphic processor with an execution frequency of 200 Hz, spending only 27 $\unicode{x00b5}$J per inference. These results illustrate the potential of neuromorphic sensing and processing for enabling smaller, more intelligent robots.
The paper introduces an interactive machine learning mechanism to process the measurements of an uncertain, nonlinear dynamic process and hence advise an actuation strategy in real-time. For concept demonstration, a trajectory-following optimization problem of a Kinova robotic arm is solved using an integral reinforcement learning approach with guaranteed stability for slowly varying dynamics. The solution is implemented using a model-free value iteration process to solve the integral temporal difference equations of the problem. The performance of the proposed technique is benchmarked against that of another model-free high-order approach and is validated for dynamic payload and disturbances. Unlike its benchmark, the proposed adaptive strategy is capable of handling extreme process variations. This is experimentally demonstrated by introducing static and time-varying payloads close to the rated maximum payload capacity of the manipulator arm. The comparison algorithm exhibited up to a seven-fold percent overshoot compared to the proposed integral reinforcement learning solution. The robustness of the algorithm is further validated by disturbing the real-time adapted strategy gains with a white noise of a standard deviation as high as 5%.
Genito-Pelvic Pain/Penetration-Disorder (GPPPD) is a common disorder but rarely treated in routine care. Previous research documents that GPPPD symptoms can be treated effectively using internet-based psychological interventions. However, non-response remains common for all state-of-the-art treatments and it is unclear which patient groups are expected to benefit most from an internet-based intervention. Multivariable prediction models are increasingly used to identify predictors of heterogeneous treatment effects, and to allocate treatments with the greatest expected benefits. In this study, we developed and internally validated a multivariable decision tree model that predicts effects of an internet-based treatment on a multidimensional composite score of GPPPD symptoms. Data of a randomized controlled trial comparing the internet-based intervention to a waitlist control group (N =200) was used to develop a decision tree model using model-based recursive partitioning. Model performance was assessed by examining the apparent and bootstrap bias-corrected performance. The final pruned decision tree consisted of one splitting variable, joint dyadic coping, based on which two response clusters emerged. No effect was found for patients with low dyadic coping ($n$=33; $d$=0.12; 95% CI: -0.57-0.80), while large effects ($d$=1.00; 95%CI: 0.68-1.32; $n$=167) are predicted for those with high dyadic coping at baseline. The bootstrap-bias-corrected performance of the model was $R^2$=27.74% (RMSE=13.22).
For a considerable time, researchers have focused on developing a method that establishes a deep connection between the generative diffusion model and mathematical physics. Despite previous efforts, progress has been limited to the pursuit of a single specialized method. In order to advance the interpretability of diffusion models and explore new research directions, it is essential to establish a unified ODE-style generative diffusion model. Such a model should draw inspiration from physical models and possess a clear geometric meaning. This paper aims to identify various physical models that are suitable for constructing ODE-style generative diffusion models accurately from a mathematical perspective. We then summarize these models into a unified method. Additionally, we perform a case study where we use the theoretical model identified by our method to develop a range of new diffusion model methods, and conduct experiments. Our experiments on CIFAR-10 demonstrate the effectiveness of our approach. We have constructed a computational framework that attains highly proficient results with regards to image generation speed, alongside an additional model that demonstrates exceptional performance in both Inception score and FID score. These results underscore the significance of our method in advancing the field of diffusion models.