亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the problem of optimal power allocation in single-hop multi-antenna ad-hoc wireless networks. A standard technique to solve this problem involves optimizing a tri-convex function under power constraints using a block-coordinate-descent based iterative algorithm. This approach, termed WMMSE, tends to be computationally complex and time consuming. Several learning-based approaches have been proposed to speed up the power allocation process. A recent work, UWMMSE, learns an affine transformation of a WMMSE parameter in an unfolded structure to accelerate convergence. In spite of achieving promising results, its application is limited to single-antenna wireless networks. In this work, we present a UWMMSE framework for power allocation in (multiple-input multiple-output) MIMO interference networks. A major advantage of this method lies in its use of low-complexity learnable systems in which the number of parameters scales linearly with respect to the hidden layer size of embedded neural architectures and the product of the number of transmitter and receiver antennas only, fully independent of the number of transceivers in the network. We illustrate the superiority of our method through an empirical study of our approach in comparison to WMMSE and also analyze its robustness to changes in channel conditions and network size.

相關內容

Explanation:無線網。 Publisher:Springer。 SIT:

The age of information (AoI) performance metric for point-to-point wireless communication systems is analytically studied under Rician-faded channels and when the receiver is equipped with multiple antennas. The general scenario of a non-linear AoI function is considered, which includes the conventional linear AoI as a special case. The stop-and-wait transmission policy is adopted, where the source node samples and then transmits new data only upon the successful reception of previous data. This approach can serve as a performance benchmark for any queuing system used in practice. New analytical and closed-form expressions are derived with respect to the average AoI and average peak AoI for the considered system configuration. We particularly focus on the energy efficiency of the said mode of operation, whereas some useful engineering insights are provided.

Cell-free Massive MIMO systems consist of a large number of geographically distributed access points (APs) that serve users by coherent joint transmission. Downlink power allocation is important in these systems, to determine which APs should transmit to which users and with what power. If the system is implemented correctly, it can deliver a more uniform user performance than conventional cellular networks. To this end, previous works have shown how to perform system-wide max-min fairness power allocation when using maximum ratio precoding. In this paper, we first generalize this method to arbitrary precoding, and then train a neural network to perform approximately the same power allocation but with reduced computational complexity. Finally, we train one neural network per AP to mimic system-wide max-min fairness power allocation, but using only local information. By learning the structure of the local propagation environment, this method outperforms the state-of-the-art distributed power allocation method from the Cell-free Massive MIMO literature.

Achieving high channel estimation accuracy and reducing hardware cost as well as power dissipation constitute substantial challenges in the design of massive multiple-input multiple-output (MIMO) systems. To resolve these difficulties, sophisticated pilot designs have been conceived for the family of energy-efficient hybrid analog-digital (HAD) beamforming architecture relying on adaptive-resolution analog-to-digital converters (RADCs). In this paper, we jointly optimize the pilot sequences, the number of RADC quantization bits and the hybrid receiver combiner in the uplink of multiuser massive MIMO systems. We solve the associated mean square error (MSE) minimization problem of channel estimation in the context of correlated Rayleigh fading channels subject to practical constraints. The associated mixed-integer problem is quite challenging due to the nonconvex nature of the objective function and of the constraints. By relying on advanced fractional programming (FP) techniques, we first recast the original problem into a more tractable yet equivalent form, which allows the decoupling of the fractional objective function. We then conceive a pair of novel algorithms for solving the resultant problems for codebook-based and codebook-free pilot schemes, respectively. To reduce the design complexity, we also propose a simplified algorithm for the codebook-based pilot scheme. Our simulation results confirm the superiority of the proposed algorithms over the relevant state-of-the-art benchmark schemes.

We consider Bayesian optimization of the output of a network of functions, where each function takes as input the output of its parent nodes, and where the network takes significant time to evaluate. Such problems arise, for example, in reinforcement learning, engineering design, and manufacturing. While the standard Bayesian optimization approach observes only the final output, our approach delivers greater query efficiency by leveraging information that the former ignores: intermediate output within the network. This is achieved by modeling the nodes of the network using Gaussian processes and choosing the points to evaluate using, as our acquisition function, the expected improvement computed with respect to the implied posterior on the objective. Although the non-Gaussian nature of this posterior prevents computing our acquisition function in closed form, we show that it can be efficiently maximized via sample average approximation. In addition, we prove that our method is asymptotically consistent, meaning that it finds a globally optimal solution as the number of evaluations grows to infinity, thus generalizing previously known convergence results for the expected improvement. Notably, this holds even though our method might not evaluate the domain densely, instead leveraging problem structure to leave regions unexplored. Finally, we show that our approach dramatically outperforms standard Bayesian optimization methods in several synthetic and real-world problems.

Reconfigurable intelligent surface (RIS) is very promising for wireless networks to achieve high energy efficiency, extended coverage, improved capacity, massive connectivity, etc. To unleash the full potentials of RIS-aided communications, acquiring accurate channel state information is crucial, which however is very challenging. For RIS-aided multiple-input and multiple-output (MIMO) communications, the existing channel estimation methods have computational complexity growing rapidly with the number of RIS units $N$ (e.g., in the order of $N^2$ or $N^3$) and/or have special requirements on the matrices involved (e.g., the matrices need to be sparse for algorithm convergence to achieve satisfactory performance), which hinder their applications. In this work, instead of using the conventional signal model in the literature, we derive a new signal model obtained through proper vectorization and reduction operations. Then, leveraging the unitary approximate message passing (UAMP), we develop a more efficient channel estimator that has complexity linear with $N$ and does not have special requirements on the relevant matrices, thanks to the robustness of UAMP. These facilitate the applications of the proposed algorithm to a general RIS-aided MIMO system with a larger $N$. Moreover, extensive numerical results show that the proposed estimator delivers much better performance and/or requires significantly less number of training symbols, thereby leading to notable reductions in both training overhead and latency.

Approximate message passing (AMP) is a low-cost iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions. However, AMP only applies to independent identically distributed (IID) transform matrices, but may become unreliable (e.g., perform poorly or even diverge) for other matrix ensembles, especially for ill-conditioned ones. Orthogonal/vector AMP (OAMP/VAMP) was proposed for general right-unitarily-invariant matrices to handle this difficulty. However, the Bayes-optimal OAMP/VAMP (BO-OAMP/VAMP) requires a high-complexity linear minimum mean square error (MMSE) estimator. This limits the application of OAMP/VAMP to large-scale systems. To solve the disadvantages of AMP and BO-OAMP/VAMP, this paper proposes a memory AMP (MAMP) framework under an orthogonality principle, which guarantees the asymptotic IID Gaussianity of estimation errors in MAMP. We present an orthogonalization procedure for the local memory estimators to realize the required orthogonality for MAMP. Furthermore, we propose a Bayes-optimal MAMP (BO-MAMP), in which a long-memory matched filter is proposed for interference suppression. The complexity of BO-MAMP is comparable to AMP. A state evolution is derived to asymptotically characterize the performance of BO-MAMP. Based on state evolution, the relaxation parameters and damping vector in BO-MAMP are optimized. For all right-unitarily-invariant matrices, the state evolution of the optimized BO-MAMP converges to the same fixed point as that of the high-complexity BO-OAMP/VAMP and is Bayes-optimal if its state evolution has a unique fixed point. Finally, simulations are provided to verify the validity and accuracy of the theoretical results.

Training a machine learning model with federated edge learning (FEEL) is typically time-consuming due to the constrained computation power of edge devices and limited wireless resources in edge networks. In this paper, the training time minimization problem is investigated in a quantized FEEL system, where the heterogeneous edge devices send quantized gradients to the edge server via orthogonal channels. In particular, a stochastic quantization scheme is adopted for compression of uploaded gradients, which can reduce the burden of per-round communication but may come at the cost of increasing number of communication rounds. The training time is modeled by taking into account the communication time, computation time and the number of communication rounds. Based on the proposed training time model, the intrinsic trade-off between the number of communication rounds and per-round latency is characterized. Specifically, we analyze the convergence behavior of the quantized FEEL in terms of the optimality gap. Further, a joint data-and-model-driven fitting method is proposed to obtain the exact optimality gap, based on which the closed-form expressions for the number of communication rounds and the total training time are obtained. Constrained by total bandwidth, the training time minimization problem is formulated as a joint quantization level and bandwidth allocation optimization problem. To this end, an algorithm based on alternating optimization is proposed, which alternatively solves the subproblem of quantization optimization via successive convex approximation and the subproblem of bandwidth allocation via bisection search. With different learning tasks and models, the validation of our analysis and the near-optimal performance of the proposed optimization algorithm are demonstrated by the experimental results.

Increasingly stringent throughput and latency requirements in datacenter networks demand fast and accurate congestion control. We observe that the reaction time and accuracy of existing datacenter congestion control schemes are inherently limited. They either rely only on explicit feedback about the network state (e.g., queue lengths in DCTCP) or only on variations of state (e.g., RTT gradient in TIMELY). To overcome these limitations, we propose a novel congestion control algorithm, PowerTCP, which achieves much more fine-grained congestion control by adapting to the bandwidth-window product (henceforth called power). PowerTCP leverages in-band network telemetry to react to changes in the network instantaneously without loss of throughput and while keeping queues short. Due to its fast reaction time, our algorithm is particularly well-suited for dynamic network environments and bursty traffic patterns. We show analytically and empirically that PowerTCP can significantly outperform the state-of-the-art in both traditional datacenter topologies and emerging reconfigurable datacenters where frequent bandwidth changes make congestion control challenging. In traditional datacenter networks, PowerTCP reduces tail flow completion times of short flows by 80% compared to DCQCN and TIMELY, and by 33% compared to HPCC even at 60% network load. In reconfigurable datacenters, PowerTCP achieves 85% circuit utilization without incurring additional latency and cuts tail latency by at least 2x compared to existing approaches.

We consider federated learning in tiered communication networks. Our network model consists of a set of silos, each holding a vertical partition of the data. Each silo contains a hub and a set of clients, with the silo's vertical data shard partitioned horizontally across its clients. We propose Tiered Decentralized Coordinate Descent (TDCD), a communication-efficient decentralized training algorithm for such two-tiered networks. The clients in each silo perform multiple local gradient steps before sharing updates with their hub to reduce communication overhead. Each hub adjusts its coordinates by averaging its workers' updates, and then hubs exchange intermediate updates with one another. We present a theoretical analysis of our algorithm and show the dependence of the convergence rate on the number of vertical partitions and the number of local updates. We further validate our approach empirically via simulation-based experiments using a variety of datasets and objectives.

Motivated by many interesting real-world applications in logistics and online advertising, we consider an online allocation problem subject to lower and upper resource constraints, where the requests arrive sequentially, sampled i.i.d. from an unknown distribution, and we need to promptly make a decision given limited resources and lower bounds requirements. First, with knowledge of the measure of feasibility, i.e., $\alpha$, we propose a new algorithm that obtains $1-O(\frac{\epsilon}{\alpha-\epsilon})$ -competitive ratio for the offline problems that know the entire requests ahead of time. Inspired by the previous studies, this algorithm adopts an innovative technique to dynamically update a threshold price vector for making decisions. Moreover, an optimization method to estimate the optimal measure of feasibility is proposed with theoretical guarantee at the end of this paper. Based on this method, if we tolerate slight violation of the lower bounds constraints with parameter $\eta$, the proposed algorithm is naturally extended to the settings without strong feasible assumption, which cover the significantly unexplored infeasible scenarios.

北京阿比特科技有限公司