亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This correspondence presents a novel sensing-assisted sparse channel recovery approach for massive antenna wireless communication systems. We focus on a fundamental configuration with one massive-antenna base station (BS) and one single-antenna communication user (CU). The wireless channel exhibits sparsity and consists of multiple paths associated with scatterers detectable via radar sensing. Under this setup, the BS first sends downlink pilots to the CU and concurrently receives the echo pilot signals for sensing the surrounding scatterers. Subsequently, the CU sends feedback information on its received pilot signal to the BS. Accordingly, the BS determines the sparse basis based on the sensed scatterers and proceeds to recover the wireless channel, exploiting the feedback information based on advanced compressive sensing (CS) algorithms. Numerical results show that the proposed sensing-assisted approach significantly increases the overall achievable rate than the conventional design relying on a discrete Fourier transform (DFT)-based sparse basis without sensing, thanks to the reduced training overhead and enhanced recovery accuracy with limited feedback.

相關內容

Buffer-aided cooperative networks (BACNs) have garnered significant attention due to their potential applications in beyond fifth generation (B5G) or sixth generation (6G) critical scenarios. This article explores various typical application scenarios of buffer-aided relaying in B5G/6G networks to emphasize the importance of incorporating BACN. Additionally, we delve into the crucial technical challenges in BACN, including stringent delay constraints, high reliability, imperfect channel state information (CSI), transmission security, and integrated network architecture. To address the challenges, we propose leveraging deep learning-based methods for the design and operation of B5G/6G networks with BACN, deviating from conventional buffer-aided relay selection approaches. In particular, we present two case studies to demonstrate the efficacy of centralized deep reinforcement learning (DRL) and decentralized DRL in buffer-aided non-terrestrial networks. Finally, we outline future research directions in B5G/6G that pertain to the utilization of BACN.

This paper investigates intelligent reflecting surface (IRS)-aided multi-antenna wireless powered communications in a multi-link interference channel, where multiple IRSs are deployed to enhance the downlink/uplink communications between each pair of hybrid access point (HAP) and wireless device. Our objective is to maximize the system sum throughput by optimizing the allocation of communication resources. To attain this objective and meanwhile balance the performance-cost tradeoff, we propose three transmission schemes: the IRS-aided asynchronous (Asy) scheme, the IRS-aided time-division multiple access (TDMA) scheme, and the IRS-aided synchronous (Syn) scheme. For the resulting three non-convex design problems, we propose a general algorithmic framework capable of addressing all of them. Numerical results show that our proposed IRS-aided schemes noticeably surpass their counterparts without IRSs in both system sum throughput and total transmission energy consumption at the HAPs. Moreover, although the IRS-aided Asy scheme consistently achieves the highest sum throughput, the IRS-aided TDMA scheme is more appealing in scenarios with substantial cross-link interference and limited IRS elements, while the IRS-aided Syn scheme is preferable in low cross-link interference scenarios.

The emergence of LLM (Large Language Model) integrated virtual assistants has brought about a rapid transformation in communication dynamics. During virtual assistant development, some developers prefer to leverage the system message, also known as an initial prompt or custom prompt, for preconditioning purposes. However, it is important to recognize that an excessive reliance on this functionality raises the risk of manipulation by malicious actors who can exploit it with carefully crafted prompts. Such malicious manipulation poses a significant threat, potentially compromising the accuracy and reliability of the virtual assistant's responses. Consequently, safeguarding the virtual assistants with detection and defense mechanisms becomes of paramount importance to ensure their safety and integrity. In this study, we explored three detection and defense mechanisms aimed at countering attacks that target the system message. These mechanisms include inserting a reference key, utilizing an LLM evaluator, and implementing a Self-Reminder. To showcase the efficacy of these mechanisms, they were tested against prominent attack techniques. Our findings demonstrate that the investigated mechanisms are capable of accurately identifying and counteracting the attacks. The effectiveness of these mechanisms underscores their potential in safeguarding the integrity and reliability of virtual assistants, reinforcing the importance of their implementation in real-world scenarios. By prioritizing the security of virtual assistants, organizations can maintain user trust, preserve the integrity of the application, and uphold the high standards expected in this era of transformative technologies.

Despite significant progress in deep learning-based optical flow methods, accurately estimating large displacements and repetitive patterns remains a challenge. The limitations of local features and similarity search patterns used in these algorithms contribute to this issue. Additionally, some existing methods suffer from slow runtime and excessive graphic memory consumption. To address these problems, this paper proposes a novel approach based on the RAFT framework. The proposed Attention-based Feature Localization (AFL) approach incorporates the attention mechanism to handle global feature extraction and address repetitive patterns. It introduces an operator for matching pixels with corresponding counterparts in the second frame and assigning accurate flow values. Furthermore, an Amorphous Lookup Operator (ALO) is proposed to enhance convergence speed and improve RAFTs ability to handle large displacements by reducing data redundancy in its search operator and expanding the search space for similarity extraction. The proposed method, Efficient RAFT (Ef-RAFT),achieves significant improvements of 10% on the Sintel dataset and 5% on the KITTI dataset over RAFT. Remarkably, these enhancements are attained with a modest 33% reduction in speed and a mere 13% increase in memory usage. The code is available at: //github.com/n3slami/Ef-RAFT

This is a first draft of a quick primer on the use of Python (and relevant libraries) to build a wireless communication prototype that supports multiple-input and multiple-output (MIMO) systems with orthogonal frequency division multiplexing (OFDM) in addition to some machine learning use cases. This primer is intended to empower researchers with a means to efficiently create simulations. This draft is aligned with the syllabus of a graduate course we created to be taught in Fall 2022 and we aspire to update this draft occasionally based on feedback from the larger research community.

Automatic verification of concurrent programs faces state explosion due to the exponential possible interleavings of its sequential components coupled with large or infinite state spaces. An alternative is deductive verification, where given a candidate invariant, we establish inductive invariance and show that any state satisfying the invariant is also safe. However, learning (inductive) program invariants is difficult. To this end, we propose a data-driven procedure to synthesize program invariants, where it is assumed that the program invariant is an expression that characterizes a (hopefully tight) over-approximation of the reachable program states. The main ideas of our approach are: (1) We treat a candidate invariant as a classifier separating states observed in (sampled) program traces from those speculated to be unreachable. (2) We develop an enumerative, template-free approach to learn such classifiers from positive and negative examples. At its core, our enumerative approach employs decision trees to generate expressions that do not over-fit to the observed states (and thus generalize). (3) We employ a runtime framework to monitor program executions that may refute the candidate invariant; every refutation triggers a revision of the candidate invariant. Our runtime framework can be viewed as an instance of statistical model checking, which gives us probabilistic guarantees on the candidate invariant. We also show that such in some cases, our counterexample-guided inductive synthesis approach converges (in probability) to an overapproximation of the reachable set of states. Our experimental results show that our framework excels in learning useful invariants using only a fraction of the set of reachable states for a wide variety of concurrent programs.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. A network based on our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 --- it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by ~10%. Code and models will be made publicly available.

北京阿比特科技有限公司