Adversarial training (AT) has been demonstrated to be effective in improving model robustness by leveraging adversarial examples for training. However, most AT methods are in face of expensive time and computational cost for calculating gradients at multiple steps in generating adversarial examples. To boost training efficiency, fast gradient sign method (FGSM) is adopted in fast AT methods by calculating gradient only once. Unfortunately, the robustness is far from satisfactory. One reason may arise from the initialization fashion. Existing fast AT generally uses a random sample-agnostic initialization, which facilitates the efficiency yet hinders a further robustness improvement. Up to now, the initialization in fast AT is still not extensively explored. In this paper, we boost fast AT with a sample-dependent adversarial initialization, i.e., an output from a generative network conditioned on a benign image and its gradient information from the target network. As the generative network and the target network are optimized jointly in the training phase, the former can adaptively generate an effective initialization with respect to the latter, which motivates gradually improved robustness. Experimental evaluations on four benchmark databases demonstrate the superiority of our proposed method over state-of-the-art fast AT methods, as well as comparable robustness to advanced multi-step AT methods. The code is released at //github.com//jiaxiaojunQAQ//FGSM-SDI.
Deep neural network-based image classifications are vulnerable to adversarial perturbations. The image classifications can be easily fooled by adding artificial small and imperceptible perturbations to input images. As one of the most effective defense strategies, adversarial training was proposed to address the vulnerability of classification models, where the adversarial examples are created and injected into training data during training. The attack and defense of classification models have been intensively studied in past years. Semantic segmentation, as an extension of classifications, has also received great attention recently. Recent work shows a large number of attack iterations are required to create effective adversarial examples to fool segmentation models. The observation makes both robustness evaluation and adversarial training on segmentation models challenging. In this work, we propose an effective and efficient segmentation attack method, dubbed SegPGD. Besides, we provide a convergence analysis to show the proposed SegPGD can create more effective adversarial examples than PGD under the same number of attack iterations. Furthermore, we propose to apply our SegPGD as the underlying attack method for segmentation adversarial training. Since SegPGD can create more effective adversarial examples, the adversarial training with our SegPGD can boost the robustness of segmentation models. Our proposals are also verified with experiments on popular Segmentation model architectures and standard segmentation datasets.
Adversarial training (AT) for robust representation learning and self-supervised learning (SSL) for unsupervised representation learning are two active research fields. Integrating AT into SSL, multiple prior works have accomplished a highly significant yet challenging task: learning robust representation without labels. A widely used framework is adversarial contrastive learning which couples AT and SSL, and thus constitute a very complex optimization problem. Inspired by the divide-and-conquer philosophy, we conjecture that it might be simplified as well as improved by solving two sub-problems: non-robust SSL and pseudo-supervised AT. This motivation shifts the focus of the task from seeking an optimal integrating strategy for a coupled problem to finding sub-solutions for sub-problems. With this said, this work discards prior practices of directly introducing AT to SSL frameworks and proposed a two-stage framework termed Decoupled Adversarial Contrastive Learning (DeACL). Extensive experimental results demonstrate that our DeACL achieves SOTA self-supervised adversarial robustness while significantly reducing the training time, which validates its effectiveness and efficiency. Moreover, our DeACL constitutes a more explainable solution, and its success also bridges the gap with semi-supervised AT for exploiting unlabeled samples for robust representation learning. The code is publicly accessible at //github.com/pantheon5100/DeACL.
Transfer-based adversarial attacks can evaluate model robustness in the black-box setting. Several methods have demonstrated impressive untargeted transferability, however, it is still challenging to efficiently produce targeted transferability. To this end, we develop a simple yet effective framework to craft targeted transfer-based adversarial examples, applying a hierarchical generative network. In particular, we contribute to amortized designs that well adapt to multi-class targeted attacks. Extensive experiments on ImageNet show that our method improves the success rates of targeted black-box attacks by a significant margin over the existing methods -- it reaches an average success rate of 29.1\% against six diverse models based only on one substitute white-box model, which significantly outperforms the state-of-the-art gradient-based attack methods. Moreover, the proposed method is also more efficient beyond an order of magnitude than gradient-based methods.
Vision Transformer (ViT), as a powerful alternative to Convolutional Neural Network (CNN), has received much attention. Recent work showed that ViTs are also vulnerable to adversarial examples like CNNs. To build robust ViTs, an intuitive way is to apply adversarial training since it has been shown as one of the most effective ways to accomplish robust CNNs. However, one major limitation of adversarial training is its heavy computational cost. The self-attention mechanism adopted by ViTs is a computationally intense operation whose expense increases quadratically with the number of input patches, making adversarial training on ViTs even more time-consuming. In this work, we first comprehensively study fast adversarial training on a variety of vision transformers and illustrate the relationship between the efficiency and robustness. Then, to expediate adversarial training on ViTs, we propose an efficient Attention Guided Adversarial Training mechanism. Specifically, relying on the specialty of self-attention, we actively remove certain patch embeddings of each layer with an attention-guided dropping strategy during adversarial training. The slimmed self-attention modules accelerate the adversarial training on ViTs significantly. With only 65\% of the fast adversarial training time, we match the state-of-the-art results on the challenging ImageNet benchmark.
Sequential recommendation as an emerging topic has attracted increasing attention due to its important practical significance. Models based on deep learning and attention mechanism have achieved good performance in sequential recommendation. Recently, the generative models based on Variational Autoencoder (VAE) have shown the unique advantage in collaborative filtering. In particular, the sequential VAE model as a recurrent version of VAE can effectively capture temporal dependencies among items in user sequence and perform sequential recommendation. However, VAE-based models suffer from a common limitation that the representational ability of the obtained approximate posterior distribution is limited, resulting in lower quality of generated samples. This is especially true for generating sequences. To solve the above problem, in this work, we propose a novel method called Adversarial and Contrastive Variational Autoencoder (ACVAE) for sequential recommendation. Specifically, we first introduce the adversarial training for sequence generation under the Adversarial Variational Bayes (AVB) framework, which enables our model to generate high-quality latent variables. Then, we employ the contrastive loss. The latent variables will be able to learn more personalized and salient characteristics by minimizing the contrastive loss. Besides, when encoding the sequence, we apply a recurrent and convolutional structure to capture global and local relationships in the sequence. Finally, we conduct extensive experiments on four real-world datasets. The experimental results show that our proposed ACVAE model outperforms other state-of-the-art methods.
While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.
Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.
Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.
Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably the revolutionary techniques are in the area of computer vision such as plausible image generation, image to image translation, facial attribute manipulation and similar domains. Despite the significant success achieved in computer vision field, applying GANs over real-world problems still have three main challenges: (1) High quality image generation; (2) Diverse image generation; and (3) Stable training. Considering numerous GAN-related research in the literature, we provide a study on the architecture-variants and loss-variants, which are proposed to handle these three challenges from two perspectives. We propose loss and architecture-variants for classifying most popular GANs, and discuss the potential improvements with focusing on these two aspects. While several reviews for GANs have been presented, there is no work focusing on the review of GAN-variants based on handling challenges mentioned above. In this paper, we review and critically discuss 7 architecture-variant GANs and 9 loss-variant GANs for remedying those three challenges. The objective of this review is to provide an insight on the footprint that current GANs research focuses on the performance improvement. Code related to GAN-variants studied in this work is summarized on //github.com/sheqi/GAN_Review.
We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan