亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We show that isogeometric Galerkin discretizations of eigenvalue problems related to the Laplace operator subject to any standard type of homogeneous boundary conditions have no outliers in certain optimal spline subspaces. Roughly speaking, these optimal subspaces are obtained from the full spline space defined on certain uniform knot sequences by imposing specific additional boundary conditions. The spline subspaces of interest have been introduced in the literature some years ago when proving their optimality with respect to Kolmogorov $n$-widths in $L^2$-norm for some function classes. The eigenfunctions of the Laplacian -- with any standard type of homogeneous boundary conditions -- belong to such classes. Here we complete the analysis of the approximation properties of these optimal spline subspaces. In particular, we provide explicit $L^2$ and $H^1$ error estimates with full approximation order for Ritz projectors in the univariate and in the multivariate tensor-product setting. Besides their intrinsic interest, these estimates imply that, for a fixed number of degrees of freedom, all the eigenfunctions and the corresponding eigenvalues are well approximated, without loss of accuracy in the whole spectrum when compared to the full spline space. Moreover, there are no spurious values in the approximated spectrum. In other words, the considered subspaces provide accurate outlier-free discretizations in the univariate and in the multivariate tensor-product case. This main contribution is complemented by an explicit construction of B-spline-like bases for the considered spline subspaces. The role of such spaces as accurate discretization spaces for addressing general problems with non-homogeneous boundary behavior is discussed as well.

相關內容

In Trefftz discontinuous Galerkin methods a partial differential equation is discretized using discontinuous shape functions that are chosen to be elementwise in the kernel of the corresponding differential operator. We propose a new variant, the embedded Trefftz discontinuous Galerkin method, which is the Galerkin projection of an underlying discontinuous Galerkin method onto a subspace of Trefftz-type. The subspace can be described in a very general way and to obtain it no Trefftz functions have to be calculated explicitly, instead the corresponding embedding operator is constructed. In the simplest cases the method recovers established Trefftz discontinuous Galerkin methods. But the approach allows to conveniently extend to general cases, including inhomogeneous sources and non-constant coefficient differential operators. We introduce the method, discuss implementational aspects and explore its potential on a set of standard PDE problems. Compared to standard discontinuous Galerkin methods we observe a severe reduction of the globally coupled unknowns in all considered cases reducing the corresponding computing time significantly. Moreover, for the Helmholtz problem we even observe an improved accuracy similar to Trefftz discontinuous Galerkin methods based on plane waves.

In this paper, the existence and uniqueness of the fixed point for the product of two nonlinear operator in Banach algebra is discussed. In addition, an approximation method of the fixed point of hybrid nonlinear equations in Banach algebras is established. This method is applied to two interesting different types of functional equations. In addition, to illustrate the applicability of our results we give some numerical examples.

We investigate the problem of approximating the matrix function $f(A)$ by $r(A)$, with $f$ a Markov function, $r$ a rational interpolant of $f$, and $A$ a symmetric Toeplitz matrix. In a first step, we obtain a new upper bound for the relative interpolation error $1-r/f$ on the spectral interval of $A$. By minimizing this upper bound over all interpolation points, we obtain a new, simple and sharp a priori bound for the relative interpolation error. We then consider three different approaches of representing and computing the rational interpolant $r$. Theoretical and numerical evidence is given that any of these methods for a scalar argument allows to achieve high precision, even in the presence of finite precision arithmetic. We finally investigate the problem of efficiently evaluating $r(A)$, where it turns out that the relative error for a matrix argument is only small if we use a partial fraction decomposition for $r$ following Antoulas and Mayo. An important role is played by a new stopping criterion which ensures to automatically find the degree of $r$ leading to a small error, even in presence of finite precision arithmetic.

P-spline represents an unknown univariate function with uniform B-splines on equidistant knots and penalizes their coefficients using a simple difference matrix for smoothness. But for non-uniform B-splines on unevenly spaced knots, such difference penalty fails, and the conventional derivative penalty is hitherto the only choice. We proposed a general P-spline estimator to lift this restriction by deriving a general difference penalty for non-uniform B-splines. We also established a sandwich formula between derivative and general difference penalties for a better understanding of their connections. Simulations show that both P-spline variants have close MSE performance in general. But in practice, one can yield a more satisfactory fit than the other. For example, the bone mineral content (BMC) data favor general P-spline, while the fossil shell data favor standard P-spline. We therefore believe both variants to be useful tools for practical modeling. To implement our general P-spline, we developed two new R packages: gps and gps.mgcv. The latter creates a new "gps" smooth class for mgcv, so that a general P-spline can be specified as s(x, bs = "gps") in a model formula and estimated in the framework of generalized additive models.

Motivated by applications to the theory of rank-metric codes, we study the problem of estimating the number of common complements of a family of subspaces over a finite field in terms of the cardinality of the family and its intersection structure. We derive upper and lower bounds for this number, along with their asymptotic versions as the field size tends to infinity. We then use these bounds to describe the general behaviour of common complements with respect to sparseness and density, showing that the decisive property is whether or not the number of spaces to be complemented is negligible with respect to the field size. By specializing our results to matrix spaces, we obtain upper and lower bounds for the number of MRD codes in the rank metric. In particular, we answer an open question in coding theory, proving that MRD codes are sparse for all parameter sets as the field size grows, with only very few exceptions. We also investigate the density of MRD codes as their number of columns tends to infinity, obtaining a new asymptotic bound. Using properties of the Euler function from number theory, we then show that our bound improves on known results for most parameter sets. We conclude the paper by establishing general structural properties of the density function of rank-metric codes.

In this paper we consider a linearized variable-time-step two-step backward differentiation formula (BDF2) scheme for solving nonlinear parabolic equations. The scheme is constructed by using the variable time-step BDF2 for the linear term and a Newton linearized method for the nonlinear term in time combining with a Galerkin finite element method (FEM) in space. We prove the unconditionally optimal error estimate of the proposed scheme under mild restrictions on the ratio of adjacent time-steps, i.e. $0<r_k < r_{\max} \approx 4.8645$ and on the maximum time step. The proof involves the discrete orthogonal convolution (DOC) and discrete complementary convolution (DCC) kernels, and the error splitting approach. In addition, our analysis also shows that the first level solution $u^1$ obtained by BDF1 (i.e. backward Euler scheme) does not cause the loss of global accuracy of second order. Numerical examples are provided to demonstrate our theoretical results.

This paper deals with robust inference for parametric copula models. Estimation using Canonical Maximum Likelihood might be unstable, especially in the presence of outliers. We propose to use a procedure based on the Maximum Mean Discrepancy (MMD) principle. We derive non-asymptotic oracle inequalities, consistency and asymptotic normality of this new estimator. In particular, the oracle inequality holds without any assumption on the copula family, and can be applied in the presence of outliers or under misspecification. Moreover, in our MMD framework, the statistical inference of copula models for which there exists no density with respect to the Lebesgue measure on $[0,1]^d$, as the Marshall-Olkin copula, becomes feasible. A simulation study shows the robustness of our new procedures, especially compared to pseudo-maximum likelihood estimation. An R package implementing the MMD estimator for copula models is available.

The Gromov-Hausdorff distance $(d_{GH})$ proves to be a useful distance measure between shapes. In order to approximate $d_{GH}$ for compact subsets $X,Y\subset\mathbb{R}^d$, we look into its relationship with $d_{H,iso}$, the infimum Hausdorff distance under Euclidean isometries. As already known for dimension $d\geq 2$, the $d_{H,iso}$ cannot be bounded above by a constant factor times $d_{GH}$. For $d=1$, however, we prove that $d_{H,iso}\leq\frac{5}{4}d_{GH}$. We also show that the bound is tight. In effect, this gives rise to an $O(n\log{n})$-time algorithm to approximate $d_{GH}$ with an approximation factor of $\left(1+\frac{1}{4}\right)$.

We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司