亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the decades, the general field of quantum computing has experienced remarkable progress since its inception. A plethora of researchers not only proposed quantum algorithms showing the power of quantum computing but also constructed the prototype of quantum computers, making it walk into our tangible reality. Those remarkable advancements in quantum computing have opened doors for novel applications, one of which is quantum databases. Researchers are trying to use a paradigm brought by quantum computing to revolutionize various aspects of database management systems. In this paper, we envision the synergy between quantum computing and databases with two perspectives: Quantum computing-enabled technology, and quantum computing-inspired technology. Based on this classification, we present a detailed overview of the research attained in this area, aiming to show the landscape of the field and draw a road map of future directions.

相關內容

量子計算是一種遵循量子力學規律調控量子信息單元進行計算的新型計算模式。對照于傳統的通用計算機,其理論模型是通用圖靈機;通用的量子計算機,其理論模型是用量子力學規律重新詮釋的通用圖靈機。從可計算的問題來看,量子計算機只能解決傳統計算機所能解決的問題,但是從計算的效率上,由于量子力學疊加性的存在,目前某些已知的量子算法在處理問題時速度要快于傳統的通用計算機。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Longitudinal or panel data can be represented as a matrix with rows indexed by units and columns indexed by time. We consider inferential questions associated with the missing data version of panel data induced by staggered adoption. We propose a computationally efficient procedure for estimation, involving only simple matrix algebra and singular value decomposition, and prove non-asymptotic and high-probability bounds on its error in estimating each missing entry. By controlling proximity to a suitably scaled Gaussian variable, we develop and analyze a data-driven procedure for constructing entrywise confidence intervals with pre-specified coverage. Despite its simplicity, our procedure turns out to be instance-optimal: we prove that the width of our confidence intervals match a non-asymptotic instance-wise lower bound derived via a Bayesian Cram\'{e}r-Rao argument. We illustrate the sharpness of our theoretical characterization on a variety of numerical examples. Our analysis is based on a general inferential toolbox for SVD-based algorithm applied to the matrix denoising model, which might be of independent interest.

Current approaches in paraphrase generation and detection heavily rely on a single general similarity score, ignoring the intricate linguistic properties of language. This paper introduces two new tasks to address this shortcoming by considering paraphrase types - specific linguistic perturbations at particular text positions. We name these tasks Paraphrase Type Generation and Paraphrase Type Detection. Our results suggest that while current techniques perform well in a binary classification scenario, i.e., paraphrased or not, the inclusion of fine-grained paraphrase types poses a significant challenge. While most approaches are good at generating and detecting general semantic similar content, they fail to understand the intrinsic linguistic variables they manipulate. Models trained in generating and identifying paraphrase types also show improvements in tasks without them. In addition, scaling these models further improves their ability to understand paraphrase types. We believe paraphrase types can unlock a new paradigm for developing paraphrase models and solving tasks in the future.

We consider contextual bandits with linear constraints (CBwLC), a variant of contextual bandits in which the algorithm consumes multiple resources subject to linear constraints on total consumption. This problem generalizes contextual bandits with knapsacks (CBwK), allowing for packing and covering constraints, as well as positive and negative resource consumption. We provide the first algorithm for CBwLC (or CBwK) that is based on regression oracles. The algorithm is simple, computationally efficient, and statistically optimal under mild assumptions. Further, we provide the first vanishing-regret guarantees for CBwLC (or CBwK) that extend beyond the stochastic environment. We side-step strong impossibility results from prior work by identifying a weaker (and, arguably, fairer) benchmark to compare against. Our algorithm builds on LagrangeBwK (Immorlica et al., FOCS 2019), a Lagrangian-based technique for CBwK, and SquareCB (Foster and Rakhlin, ICML 2020), a regression-based technique for contextual bandits. Our analysis leverages the inherent modularity of both techniques.

The difficulty of factoring large integers into primes is the basis for cryptosystems such as RSA. Due to the widespread popularity of RSA, there have been many proposed attacks on the factorization problem such as side-channel attacks where some bits of the prime factors are available. When enough bits of the prime factors are known, two methods that are effective at solving the factorization problem are satisfiability (SAT) solvers and Coppersmith's method. The SAT approach reduces the factorization problem to a Boolean satisfiability problem, while Coppersmith's approach uses lattice basis reduction. Both methods have their advantages, but they also have their limitations: Coppersmith's method does not apply when the known bit positions are randomized, while SAT-based methods can take advantage of known bits in arbitrary locations, but have no knowledge of the algebraic structure exploited by Coppersmith's method. In this paper we describe a new hybrid SAT and computer algebra approach to efficiently solve random leaked-bit factorization problems. Specifically, Coppersmith's method is invoked by a SAT solver to determine whether a partial bit assignment can be extended to a complete assignment. Our hybrid implementation solves random leaked-bit factorization problems significantly faster than either a pure SAT or pure computer algebra approach.

An effective exact method is proposed for computing generalized eigenspaces of a matrix of integers or rational numbers. Keys of our approach are the use of minimal annihilating polynomials and the concept of the Jourdan-Krylov basis. A new method, called Jordan-Krylov elimination, is introduced to design an algorithm for computing Jordan-Krylov basis. The resulting algorithm outputs generalized eigenspaces as a form of Jordan chains. Notably, in the output, components of generalized eigenvectors are expressed as polynomials in the associated eigenvalue as a variable.

The field of neuro-symbolic artificial intelligence (NeSy), which combines learning and reasoning, has recently experienced significant growth. There now are a wide variety of NeSy frameworks, each with its own specific language for expressing background knowledge and how to relate it to neural networks. This heterogeneity hinders accessibility for newcomers and makes comparing different NeSy frameworks challenging. We propose a language for NeSy, which we call ULLER, a Unfied Language for LEarning and Reasoning. ULLER encompasses a wide variety of settings, while ensuring that knowledge described in it can be used in existing NeSy systems. ULLER has a first-order logic syntax specialised for NeSy for which we provide example semantics including classical FOL, fuzzy logic, and probabilistic logic. We believe ULLER is a first step towards making NeSy research more accessible and comparable, paving the way for libraries that streamline training and evaluation across a multitude of semantics, knowledge bases, and NeSy systems.

In an observational study, matching aims to create many small sets of similar treated and control units from initial samples that may differ substantially in order to permit more credible causal inferences. The problem of constructing matched sets may be formulated as an optimization problem, but it can be challenging to specify a single objective function that adequately captures all the design considerations at work. One solution, proposed by \citet{pimentel2019optimal} is to explore a family of matched designs that are Pareto optimal for multiple objective functions. We present an R package, \href{//github.com/ShichaoHan/MultiObjMatch}{\texttt{MultiObjMatch}}, that implements this multi-objective matching strategy using a network flow algorithm for several common design goals: marginal balance on important covariates, size of the matched sample, and average within-pair multivariate distances. We demonstrate the package's flexibility in exploring user-defined tradeoffs of interest via two case studies, a reanalysis of the canonical National Supported Work dataset and a novel analysis of a clinical dataset to estimate the impact of diabetic kidney disease on hospitalization costs.

Graphs are used widely to model complex systems, and detecting anomalies in a graph is an important task in the analysis of complex systems. Graph anomalies are patterns in a graph that do not conform to normal patterns expected of the attributes and/or structures of the graph. In recent years, graph neural networks (GNNs) have been studied extensively and have successfully performed difficult machine learning tasks in node classification, link prediction, and graph classification thanks to the highly expressive capability via message passing in effectively learning graph representations. To solve the graph anomaly detection problem, GNN-based methods leverage information about the graph attributes (or features) and/or structures to learn to score anomalies appropriately. In this survey, we review the recent advances made in detecting graph anomalies using GNN models. Specifically, we summarize GNN-based methods according to the graph type (i.e., static and dynamic), the anomaly type (i.e., node, edge, subgraph, and whole graph), and the network architecture (e.g., graph autoencoder, graph convolutional network). To the best of our knowledge, this survey is the first comprehensive review of graph anomaly detection methods based on GNNs.

This PhD thesis contains several contributions to the field of statistical causal modeling. Statistical causal models are statistical models embedded with causal assumptions that allow for the inference and reasoning about the behavior of stochastic systems affected by external manipulation (interventions). This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust (out-of-distribution generalizing) prediction methods. We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization. Our proposed estimators show, in certain settings, mean squared error improvements compared to both canonical and state-of-the-art estimators. We show that recent research on distributionally robust prediction methods has connections to well-studied estimators from econometrics. This connection leads us to prove that general K-class estimators possess distributional robustness properties. We, furthermore, propose a general framework for distributional robustness with respect to intervention-induced distributions. In this framework, we derive sufficient conditions for the identifiability of distributionally robust prediction methods and present impossibility results that show the necessity of several of these conditions. We present a new structure learning method applicable in additive noise models with directed trees as causal graphs. We prove consistency in a vanishing identifiability setup and provide a method for testing substructure hypotheses with asymptotic family-wise error control that remains valid post-selection. Finally, we present heuristic ideas for learning summary graphs of nonlinear time-series models.

Meta-reinforcement learning algorithms can enable robots to acquire new skills much more quickly, by leveraging prior experience to learn how to learn. However, much of the current research on meta-reinforcement learning focuses on task distributions that are very narrow. For example, a commonly used meta-reinforcement learning benchmark uses different running velocities for a simulated robot as different tasks. When policies are meta-trained on such narrow task distributions, they cannot possibly generalize to more quickly acquire entirely new tasks. Therefore, if the aim of these methods is to enable faster acquisition of entirely new behaviors, we must evaluate them on task distributions that are sufficiently broad to enable generalization to new behaviors. In this paper, we propose an open-source simulated benchmark for meta-reinforcement learning and multi-task learning consisting of 50 distinct robotic manipulation tasks. Our aim is to make it possible to develop algorithms that generalize to accelerate the acquisition of entirely new, held-out tasks. We evaluate 6 state-of-the-art meta-reinforcement learning and multi-task learning algorithms on these tasks. Surprisingly, while each task and its variations (e.g., with different object positions) can be learned with reasonable success, these algorithms struggle to learn with multiple tasks at the same time, even with as few as ten distinct training tasks. Our analysis and open-source environments pave the way for future research in multi-task learning and meta-learning that can enable meaningful generalization, thereby unlocking the full potential of these methods.

北京阿比特科技有限公司