亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Facial Expression Recognition (FER) is a machine learning problem that deals with recognizing human facial expressions. While existing work has achieved performance improvements in recent years, FER in the wild and under challenging conditions remains a challenge. In this paper, a lightweight patch and attention network based on MobileNetV1, referred to as PAtt-Lite, is proposed to improve FER performance under challenging conditions. A truncated ImageNet-pre-trained MobileNetV1 is utilized as the backbone feature extractor of the proposed method. In place of the truncated layers is a patch extraction block that is proposed for extracting significant local facial features to enhance the representation from MobileNetV1, especially under challenging conditions. An attention classifier is also proposed to improve the learning of these patched feature maps from the extremely lightweight feature extractor. The experimental results on public benchmark databases proved the effectiveness of the proposed method. PAtt-Lite achieved state-of-the-art results on CK+, RAF-DB, FER2013, FERPlus, and the challenging conditions subsets for RAF-DB and FERPlus. The source code for the proposed method will be available at //github.com/JLREx/PAtt-Lite.

相關內容

Dynamic facial expression recognition (DFER) is essential to the development of intelligent and empathetic machines. Prior efforts in this field mainly fall into supervised learning paradigm, which is severely restricted by the limited labeled data in existing datasets. Inspired by recent unprecedented success of masked autoencoders (e.g., VideoMAE), this paper proposes MAE-DFER, a novel self-supervised method which leverages large-scale self-supervised pre-training on abundant unlabeled data to largely advance the development of DFER. Since the vanilla Vision Transformer (ViT) employed in VideoMAE requires substantial computation during fine-tuning, MAE-DFER develops an efficient local-global interaction Transformer (LGI-Former) as the encoder. Moreover, in addition to the standalone appearance content reconstruction in VideoMAE, MAE-DFER also introduces explicit temporal facial motion modeling to encourage LGI-Former to excavate both static appearance and dynamic motion information. Extensive experiments on six datasets show that MAE-DFER consistently outperforms state-of-the-art supervised methods by significant margins (e.g., +6.30\% UAR on DFEW and +8.34\% UAR on MAFW), verifying that it can learn powerful dynamic facial representations via large-scale self-supervised pre-training. Besides, it has comparable or even better performance than VideoMAE, while largely reducing the computational cost (about 38\% FLOPs). We believe MAE-DFER has paved a new way for the advancement of DFER and can inspire more relevant research in this field and even other related tasks. Codes and models are publicly available at //github.com/sunlicai/MAE-DFER.

Video Action Recognition (VAR) is a challenging task due to its inherent complexities. Though different approaches have been explored in the literature, designing a unified framework to recognize a large number of human actions is still a challenging problem. Recently, Multi-Modal Learning (MML) has demonstrated promising results in this domain. In literature, 2D skeleton or pose modality has often been used for this task, either independently or in conjunction with the visual information (RGB modality) present in videos. However, the combination of pose, visual information, and text attributes has not been explored yet, though text and pose attributes independently have been proven to be effective in numerous computer vision tasks. In this paper, we present the first pose augmented Vision-language model (VLM) for VAR. Notably, our scheme achieves an accuracy of 92.81% and 73.02% on two popular human video action recognition benchmark datasets, UCF-101 and HMDB-51, respectively, even without any video data pre-training, and an accuracy of 96.11% and 75.75% after kinetics pre-training.

Vision Transformers (ViTs) have achieved state-of-the-art performance on various computer vision applications. However, these models have considerable storage and computational overheads, making their deployment and efficient inference on edge devices challenging. Quantization is a promising approach to reducing model complexity, and the dyadic arithmetic pipeline can allow the quantized models to perform efficient integer-only inference. Unfortunately, dyadic arithmetic is based on the homogeneity condition in convolutional neural networks, which is not applicable to the non-linear components in ViTs, making integer-only inference of ViTs an open issue. In this paper, we propose I-ViT, an integer-only quantization scheme for ViTs, to enable ViTs to perform the entire computational graph of inference with integer arithmetic and bit-shifting, and without any floating-point arithmetic. In I-ViT, linear operations (e.g., MatMul and Dense) follow the integer-only pipeline with dyadic arithmetic, and non-linear operations (e.g., Softmax, GELU, and LayerNorm) are approximated by the proposed light-weight integer-only arithmetic methods. More specifically, I-ViT applies the proposed Shiftmax and ShiftGELU, which are designed to use integer bit-shifting to approximate the corresponding floating-point operations. We evaluate I-ViT on various benchmark models and the results show that integer-only INT8 quantization achieves comparable (or even slightly higher) accuracy to the full-precision (FP) baseline. Furthermore, we utilize TVM for practical hardware deployment on the GPU's integer arithmetic units, achieving 3.72$\sim$4.11$\times$ inference speedup compared to the FP model. Code of both Pytorch and TVM is released at //github.com/zkkli/I-ViT.

Scene Text Editing (STE) is a challenging research problem, and it aims to modify existing texts in an image while preserving the background and the font style of the original text of the image. Due to its various real-life applications, researchers have explored several approaches toward STE in recent years. However, most of the existing STE methods show inferior editing performance because of (1) complex image backgrounds, (2) various font styles, and (3) varying word lengths within the text. To address such inferior editing performance issues, in this paper, we propose a novel font-agnostic scene text editing framework, named FAST, for simultaneously generating text in arbitrary styles and locations while preserving a natural and realistic appearance through combined mask generation and style transfer. The proposed approach differs from the existing methods as they directly modify all image pixels. Instead, the proposed method has introduced a filtering mechanism to remove background distractions, allowing the network to focus solely on the text regions where editing is required. Additionally, a text-style transfer module has been designed to mitigate the challenges posed by varying word lengths. Extensive experiments and ablations have been conducted, and the results demonstrate that the proposed method outperforms the existing methods both qualitatively and quantitatively.

We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes. Rapid model advancements pose challenges to evaluation benchmark development. Problems include: (1) How to systematically structure and evaluate the complicated multimodal tasks; (2) How to design evaluation metrics that work well across question and answer types; and (3) How to give model insights beyond a simple performance ranking. To this end, we present MM-Vet, designed based on the insight that the intriguing ability to solve complicated tasks is often achieved by a generalist model being able to integrate different core vision-language (VL) capabilities. MM-Vet defines 6 core VL capabilities and examines the 16 integrations of interest derived from the capability combination. For evaluation metrics, we propose an LLM-based evaluator for open-ended outputs. The evaluator enables the evaluation across different question types and answer styles, resulting in a unified scoring metric. We evaluate representative LMMs on MM-Vet, providing insights into the capabilities of different LMM system paradigms and models. Code and data are available at //github.com/yuweihao/MM-Vet.

Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.

Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at //github.com/marslanm/multimodality-representation-learning.

Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.

北京阿比特科技有限公司