亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper considers exchange of indivisible objects when agents are endowed with and desire bundles of objects. Agents are assumed to have lexicographic preferences over bundles. We show that the generalized Top Trading Cycles rule (TTC) is characterized by Pareto efficiency, balancedness, the weak endowment lower bound, and truncation-proofness (or drop strategy-proofness). In the classic Shapley-Scarf model, TTC is characterized by Pareto efficiency, individual rationality, and truncation-proofness. The proof is nonstandard and its novelty has independent methodological interest.

相關內容

This paper investigates the relationships between hyperparameters of machine learning and fairness. Data-driven solutions are increasingly used in critical socio-technical applications where ensuring fairness is important. Rather than explicitly encoding decision logic via control and data structures, the ML developers provide input data, perform some pre-processing, choose ML algorithms, and tune hyperparameters (HPs) to infer a program that encodes the decision logic. Prior works report that the selection of HPs can significantly influence fairness. However, tuning HPs to find an ideal trade-off between accuracy, precision, and fairness has remained an expensive and tedious task. Can we predict fairness of HP configuration for a given dataset? Are the predictions robust to distribution shifts? We focus on group fairness notions and investigate the HP space of 5 training algorithms. We first find that tree regressors and XGBoots significantly outperformed deep neural networks and support vector machines in accurately predicting the fairness of HPs. When predicting the fairness of ML hyperparameters under temporal distribution shift, the tree regressors outperforms the other algorithms with reasonable accuracy. However, the precision depends on the ML training algorithm, dataset, and protected attributes. For example, the tree regressor model was robust for training data shift from 2014 to 2018 on logistic regression and discriminant analysis HPs with sex as the protected attribute; but not for race and other training algorithms. Our method provides a sound framework to efficiently perform fine-tuning of ML training algorithms and understand the relationships between HPs and fairness.

Token merging has emerged as a new paradigm that can accelerate the inference of Vision Transformers (ViTs) without any retraining or fine-tuning. To push the frontier of training-free acceleration in ViTs, we improve token merging by adding the perspectives of 1) activation outliers and 2) hierarchical representations. Through a careful analysis of the attention behavior in ViTs, we characterize a delayed onset of the convergent attention phenomenon, which makes token merging undesirable in the bottom blocks of ViTs. Moreover, we augment token merging with a hierarchical processing scheme to capture multi-scale redundancy between visual tokens. Combining these two insights, we build a unified inference framework called DSM: Delayed Spatial Merging. We extensively evaluate DSM on various ViT model scales (Tiny to Huge) and tasks (ImageNet-1k and transfer learning), achieving up to 1.8$\times$ FLOP reduction and 1.6$\times$ throughput speedup at a negligible loss while being two orders of magnitude faster than existing methods.

Accelerating the inference of large language models (LLMs) is an important challenge in artificial intelligence. This paper introduces distributed speculative inference (DSI), a novel distributed inference algorithm that is provably faster than speculative inference (SI) [leviathan2023fast, chen2023accelerating, miao2023specinfer] and traditional autoregressive inference (non-SI). Like other SI algorithms, DSI works on frozen LLMs, requiring no training or architectural modifications, and it preserves the target distribution. Prior studies on SI have demonstrated empirical speedups (compared to non-SI) but require a fast and accurate drafter LLM. In practice, off-the-shelf LLMs often do not have matching drafters that are sufficiently fast and accurate. We show a gap: SI gets slower than non-SI when using slower or less accurate drafters. We close this gap by proving that DSI is faster than both SI and non-SI given any drafters. By orchestrating multiple instances of the target and drafters, DSI is not only faster than SI but also supports LLMs that cannot be accelerated with SI. Our simulations show speedups of off-the-shelf LLMs in realistic settings: DSI is 1.29-1.92x faster than SI.

Minimal pairs are a well-established approach to evaluating the grammatical knowledge of language models. However, existing resources for minimal pairs address a limited number of languages and lack diversity of language-specific grammatical phenomena. This paper introduces the Russian Benchmark of Linguistic Minimal Pairs (RuBLiMP), which includes 45k pairs of sentences that differ in grammaticality and isolate a morphological, syntactic, or semantic phenomenon. In contrast to existing benchmarks of linguistic minimal pairs, RuBLiMP is created by applying linguistic perturbations to automatically annotated sentences from open text corpora and carefully curating test data. We describe the data collection protocol and present the results of evaluating 25 language models in various scenarios. We find that the widely used language models for Russian are sensitive to morphological and agreement-oriented contrasts but fall behind humans on phenomena requiring understanding of structural relations, negation, transitivity, and tense. RuBLiMP, the codebase, and other materials are publicly available.

Penrose tilings are the most famous aperiodic tilings, and they have been studied extensively. In particular, patterns composed with hexagons (H), boats (B) and stars (S) were soon exhibited and many physicists published on what they later called HBS tilings, but no article or book combines all we know about them. This work is done here, before introducing new decorations and properties including explicit substitutions. For the latter, the star comes in three versions so we have 5 prototiles in what we call the Star tileset. Yet this set yields exactly the strict HBS tilings formed using 3 tiles decorated with either the usual decorations (arrows) or Ammann bar markings for instance. Another new tileset called Gemstones is also presented, derived from the Star tileset.

We prove impossibility results for adaptivity in non-smooth stochastic convex optimization. Given a set of problem parameters we wish to adapt to, we define a "price of adaptivity" (PoA) that, roughly speaking, measures the multiplicative increase in suboptimality due to uncertainty in these parameters. When the initial distance to the optimum is unknown but a gradient norm bound is known, we show that the PoA is at least logarithmic for expected suboptimality, and double-logarithmic for median suboptimality. When there is uncertainty in both distance and gradient norm, we show that the PoA must be polynomial in the level of uncertainty. Our lower bounds nearly match existing upper bounds, and establish that there is no parameter-free lunch. En route, we also establish tight upper and lower bounds for (known-parameter) high-probability stochastic convex optimization with heavy-tailed and bounded noise, respectively.

We examine how users perceive the limitations of an AI system when it encounters a task that it cannot perform perfectly and whether providing explanations alongside its answers aids users in constructing an appropriate mental model of the system's capabilities and limitations. We employ a visual question answer and explanation task where we control the AI system's limitations by manipulating the visual inputs: during inference, the system either processes full-color or grayscale images. Our goal is to determine whether participants can perceive the limitations of the system. We hypothesize that explanations will make limited AI capabilities more transparent to users. However, our results show that explanations do not have this effect. Instead of allowing users to more accurately assess the limitations of the AI system, explanations generally increase users' perceptions of the system's competence - regardless of its actual performance.

Game-playing agents like AlphaGo have achieved superhuman performance through self-play, which is theoretically guaranteed to yield optimal policies in competitive games. However, most language tasks are partially or fully cooperative, so it is an open question whether techniques like self-play can effectively be used to improve language models. We empirically investigate this question in a negotiation game setting known as Deal or No Deal (DoND). Crucially, the objective in DoND can be modified to produce a fully cooperative game, a strictly competitive one, or anything in between. We finetune language models in self-play over multiple rounds of filtered behavior cloning in DoND for each of these objectives. Contrary to expectations, we find that language model self-play leads to significant performance gains in both cooperation and competition with humans, suggesting that self-play and related techniques have promise despite a lack of theoretical guarantees.

Radiology reports are highly technical documents aimed primarily at doctor-doctor communication. There has been an increasing interest in sharing those reports with patients, necessitating providing them patient-friendly simplifications of the original reports. This study explores the suitability of large language models in automatically generating those simplifications. We examine the usefulness of chain-of-thought and self-correction prompting mechanisms in this domain. We also propose a new evaluation protocol that employs radiologists and laypeople, where radiologists verify the factual correctness of simplifications, and laypeople assess simplicity and comprehension. Our experimental results demonstrate the effectiveness of self-correction prompting in producing high-quality simplifications. Our findings illuminate the preferences of radiologists and laypeople regarding text simplification, informing future research on this topic.

Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.

北京阿比特科技有限公司