Wireless Sensor Networks (WSNs) play a pivotal role in enabling Internet of Things (IoT) devices with sensing and actuation capabilities. Operating in remote and resource-constrained environments, these IoT devices face challenges related to energy consumption, crucial for network longevity. Clustering protocols have emerged as an effective solution to alleviate energy burdens on IoT devices. This paper introduces Low-Energy Adaptive Clustering Hierarchy with Reinforcement Learning-based Controller (LEACH-RLC), a novel clustering protocol that employs a Mixed Integer Linear Programming (MILP) for strategic selection of cluster heads (CHs) and node-to-cluster assignments. Additionally, it integrates a Reinforcement Learning (RL) agent to minimize control overhead by learning optimal timings for generating new clusters. Addressing key research questions, LEACH-RLC seeks to balance control overhead reduction without compromising overall network performance. Through extensive simulations, this paper investigates the frequency and opportune moments for generating new clustering solutions. Results demonstrate the superior performance of LEACH-RLC over conventional LEACH and LEACH-C, showcasing enhanced network lifetime, reduced average energy consumption, and minimized control overhead. The proposed protocol contributes to advancing the efficiency and adaptability of WSNs, addressing critical challenges in IoT deployments.
In the field of Learning from Demonstration (LfD), Dynamical Systems (DSs) have gained significant attention due to their ability to generate real-time motions and reach predefined targets. However, the conventional convergence-centric behavior exhibited by DSs may fall short in safety-critical tasks, specifically, those requiring precise replication of demonstrated trajectories or strict adherence to constrained regions even in the presence of perturbations or human intervention. Moreover, existing DS research often assumes demonstrations solely in Euclidean space, overlooking the crucial aspect of orientation in various applications. To alleviate these shortcomings, we present an innovative approach geared toward ensuring the safe execution of learned orientation skills within constrained regions surrounding a reference trajectory. This involves learning a stable DS on SO(3), extracting time-varying conic constraints from the variability observed in expert demonstrations, and bounding the evolution of the DS with Conic Control Barrier Function (CCBF) to fulfill the constraints. We validated our approach through extensive evaluation in simulation and showcased its effectiveness for a cutting skill in the context of assisted teleoperation.
In the Network Revenue Management (NRM) problem, products composed of up to L resources are sold to stochastically arriving customers. We take a randomized rounding approach to NRM, motivated by developments in Online Contention Resolution Schemes (OCRS). The goal is to take a fractional solution to NRM that satisfies the resource constraints in expectation, and implement it in an online policy that satisfies the resource constraints in any state, while (approximately) preserving all of the sales that were prescribed by the fractional solution. OCRS cannot be naively applied to NRM or revenue management problems in general, because customer substitution induces a negative correlation in products being demanded. We start by deriving an OCRS that achieves a guarantee of 1/(1+L) for NRM with customer substitution, matching a common benchmark in the literature. We then show how to beat this benchmark for all integers L>1 assuming no substitution, i.e., in the standard OCRS setting. By contrast, we show that this benchmark is unbeatable using OCRS or any fractional relaxation if there is customer substitution, for all integers L that are the power of a prime number. Finally, we show how to beat 1/(1+L) even with customer substitution, if the products comprise one item from each of up to L groups. Our results have corresponding implications for Online Combinatorial Auctions, in which buyers bid for bundles of up to L items, and buyers being single-minded is akin to no substitution. Our final result also beats 1/(1+L) for Prophet Inequality on the intersection of L partition matroids. All in all, our paper provides a unifying framework for applying OCRS to these problems, delineating the impact of substitution, and establishing a separation between the guarantees achievable with vs. without substitution under general resource constraints parametrized by L.
Contextualized embeddings are the preferred tool for modeling Lexical Semantic Change (LSC). Current evaluations typically focus on a specific task known as Graded Change Detection (GCD). However, performance comparison across work are often misleading due to their reliance on diverse settings. In this paper, we evaluate state-of-the-art models and approaches for GCD under equal conditions. We further break the LSC problem into Word-in-Context (WiC) and Word Sense Induction (WSI) tasks, and compare models across these different levels. Our evaluation is performed across different languages on eight available benchmarks for LSC, and shows that (i) APD outperforms other approaches for GCD; (ii) XL-LEXEME outperforms other contextualized models for WiC, WSI, and GCD, while being comparable to GPT-4; (iii) there is a clear need for improving the modeling of word meanings, as well as focus on how, when, and why these meanings change, rather than solely focusing on the extent of semantic change.
Agents in mixed-motive coordination problems such as Chicken may fail to coordinate on a Pareto-efficient outcome. Safe Pareto improvements (SPIs) were originally proposed to mitigate miscoordination in cases where players lack probabilistic beliefs as to how their delegates will play a game; delegates are instructed to behave so as to guarantee a Pareto improvement on how they would play by default. More generally, SPIs may be defined as transformations of strategy profiles such that all players are necessarily better off under the transformed profile. In this work, we investigate the extent to which SPIs can reduce downsides of miscoordination between expected utility-maximizing agents. We consider games in which players submit computer programs that can condition their decisions on each other's code, and use this property to construct SPIs using programs capable of renegotiation. We first show that under mild conditions on players' beliefs, each player always prefers to use renegotiation. Next, we show that under similar assumptions, each player always prefers to be willing to renegotiate at least to the point at which they receive the lowest payoff they can attain in any efficient outcome. Thus subjectively optimal play guarantees players at least these payoffs, without the need for coordination on specific Pareto improvements. Lastly, we prove that renegotiation does not guarantee players any improvements on this bound.
We study the complexity of Non-Gaussian Component Analysis (NGCA) in the Statistical Query (SQ) model. Prior work developed a general methodology to prove SQ lower bounds for this task that have been applicable to a wide range of contexts. In particular, it was known that for any univariate distribution $A$ satisfying certain conditions, distinguishing between a standard multivariate Gaussian and a distribution that behaves like $A$ in a random hidden direction and like a standard Gaussian in the orthogonal complement, is SQ-hard. The required conditions were that (1) $A$ matches many low-order moments with the standard univariate Gaussian, and (2) the chi-squared norm of $A$ with respect to the standard Gaussian is finite. While the moment-matching condition is necessary for hardness, the chi-squared condition was only required for technical reasons. In this work, we establish that the latter condition is indeed not necessary. In particular, we prove near-optimal SQ lower bounds for NGCA under the moment-matching condition only. Our result naturally generalizes to the setting of a hidden subspace. Leveraging our general SQ lower bound, we obtain near-optimal SQ lower bounds for a range of concrete estimation tasks where existing techniques provide sub-optimal or even vacuous guarantees.
This paper explores the potential of Physics-Informed Neural Networks (PINNs) to serve as Reduced Order Models (ROMs) for simulating the flow field within stirred tank reactors (STRs). We solve the two-dimensional stationary Navier-Stokes equations within a geometrically intricate domain and explore methodologies that allow us to integrate additional physical insights into the model. These approaches include imposing the Dirichlet boundary conditions (BCs) strongly and employing domain decomposition (DD), with both overlapping and non-overlapping subdomains. We adapt the Extended Physics-Informed Neural Network (XPINN) approach to solve different sets of equations in distinct subdomains based on the diverse flow characteristics present in each region. Our exploration results in a hierarchy of models spanning various levels of complexity, where the best models exhibit l1 prediction errors of less than 1% for both pressure and velocity. To illustrate the reproducibility of our approach, we track the errors over repeated independent training runs of the best identified model and show its reliability. Subsequently, by incorporating the stirring rate as a parametric input, we develop a fast-to-evaluate model of the flow capable of interpolating across a wide range of Reynolds numbers. Although we exclusively restrict ourselves to STRs in this work, we conclude that the steps taken to obtain the presented model hierarchy can be transferred to other applications.
Court View Generation (CVG) is a challenging task in the field of Legal Artificial Intelligence (LegalAI), which aims to generate court views based on the plaintiff claims and the fact descriptions. While Pretrained Language Models (PLMs) have showcased their prowess in natural language generation, their application to the complex, knowledge-intensive domain of CVG often reveals inherent limitations. In this paper, we present a novel approach, named Knowledge Injection and Guidance (KIG), designed to bolster CVG using PLMs. To efficiently incorporate domain knowledge during the training stage, we introduce a knowledge-injected prompt encoder for prompt tuning, thereby reducing computational overhead. Moreover, to further enhance the model's ability to utilize domain knowledge, we employ a generating navigator, which dynamically guides the text generation process in the inference stage without altering the model's architecture, making it readily transferable. Comprehensive experiments on real-world data demonstrate the effectiveness of our approach compared to several established baselines, especially in the responsivity of claims, where it outperforms the best baseline by 11.87%.
Advanced Audio-Visual Speech Recognition (AVSR) systems have been observed to be sensitive to missing video frames, performing even worse than single-modality models. While applying the dropout technique to the video modality enhances robustness to missing frames, it simultaneously results in a performance loss when dealing with complete data input. In this paper, we investigate this contrasting phenomenon from the perspective of modality bias and reveal that an excessive modality bias on the audio caused by dropout is the underlying reason. Moreover, we present the Modality Bias Hypothesis (MBH) to systematically describe the relationship between modality bias and robustness against missing modality in multimodal systems. Building on these findings, we propose a novel Multimodal Distribution Approximation with Knowledge Distillation (MDA-KD) framework to reduce over-reliance on the audio modality and to maintain performance and robustness simultaneously. Finally, to address an entirely missing modality, we adopt adapters to dynamically switch decision strategies. The effectiveness of our proposed approach is evaluated and validated through a series of comprehensive experiments using the MISP2021 and MISP2022 datasets. Our code is available at //github.com/dalision/ModalBiasAVSR
Collision avoidance algorithms for Autonomous Surface Vehicles (ASV) that follow the Convention on the International Regulations for Preventing Collisions at Sea (COLREGs) have been proposed in recent years. However, it may be difficult and unsafe to follow COLREGs in congested waters, where multiple ASVs are navigating in the presence of static obstacles and strong currents, due to the complex interactions. To address this problem, we propose a decentralized multi-ASV collision avoidance policy based on Distributional Reinforcement Learning, which considers the interactions among ASVs as well as with static obstacles and current flows. We evaluate the performance of the proposed Distributional RL based policy against a traditional RL-based policy and two classical methods, Artificial Potential Fields (APF) and Reciprocal Velocity Obstacles (RVO), in simulation experiments, which show that the proposed policy achieves superior performance in navigation safety, while requiring minimal travel time and energy. A variant of our framework that automatically adapts its risk sensitivity is also demonstrated to improve ASV safety in highly congested environments.
Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.