We study the problem of detecting the correlation between two Gaussian databases $\mathsf{X}\in\mathbb{R}^{n\times d}$ and $\mathsf{Y}^{n\times d}$, each composed of $n$ users with $d$ features. This problem is relevant in the analysis of social media, computational biology, etc. We formulate this as a hypothesis testing problem: under the null hypothesis, these two databases are statistically independent. Under the alternative, however, there exists an unknown permutation $\sigma$ over the set of $n$ users (or, row permutation), such that $\mathsf{X}$ is $\rho$-correlated with $\mathsf{Y}^\sigma$, a permuted version of $\mathsf{Y}$. We determine sharp thresholds at which optimal testing exhibits a phase transition, depending on the asymptotic regime of $n$ and $d$. Specifically, we prove that if $\rho^2d\to0$, as $d\to\infty$, then weak detection (performing slightly better than random guessing) is statistically impossible, irrespectively of the value of $n$. This compliments the performance of a simple test that thresholds the sum all entries of $\mathsf{X}^T\mathsf{Y}$. Furthermore, when $d$ is fixed, we prove that strong detection (vanishing error probability) is impossible for any $\rho<\rho^\star$, where $\rho^\star$ is an explicit function of $d$, while weak detection is again impossible as long as $\rho^2d\to0$. These results close significant gaps in current recent related studies.
A sequence of random variables is called exchangeable if its joint distribution is invariant under permutations. The original formulation of de Finetti's theorem says that any exchangeable sequence of $\{0,1\}$-valued random variables can be thought of as a mixture of independent and identically distributed sequences in a certain precise mathematical sense. Interpreting this statement from a convex analytic perspective, Hewitt and Savage obtained the same conclusion for more general state spaces under some topological conditions. The main contribution of this paper is in providing a new framework that explains the theorem purely as a consequence of the underlying distribution of the random variables, with no topological conditions (beyond Hausdorffness) on the state space being necessary if the distribution is Radon. We also show that it is consistent with the axioms of ZFC that de Finetti's theorem holds for all sequences of exchangeable random variables taking values in any complete metric space. The framework we use is based on nonstandard analysis. We have provided a self-contained introduction to nonstandard analysis as an appendix, thus rendering measure theoretic probability and point-set topology as the only prerequisites for this paper. Our introduction aims to develop some new ideologies that might be of interest to mathematicians, philosophers, and mathematics educators alike. Our technical tools come from nonstandard topological measure theory, in which a highlight is a new generalization of Prokhorov's theorem. Modulo such technical tools, our proof relies on properties of the empirical measures induced by hyperfinitely many identically distributed random variables -- a feature that allows us to establish de Finetti's theorem in the generality that we seek while still retaining the combinatorial intuition of proofs of simpler versions of de Finetti's theorem.
The Plackett--Luce model is a popular approach for ranking data analysis, where a utility vector is employed to determine the probability of each outcome based on Luce's choice axiom. In this paper, we investigate the asymptotic theory of utility vector estimation by maximizing different types of likelihood, such as the full-, marginal-, and quasi-likelihood. We provide a rank-matching interpretation for the estimating equations of these estimators and analyze their asymptotic behavior as the number of items being compared tends to infinity. In particular, we establish the uniform consistency of these estimators under conditions characterized by the topology of the underlying comparison graph sequence and demonstrate that the proposed conditions are sharp for common sampling scenarios such as the nonuniform random hypergraph model and the hypergraph stochastic block model; we also obtain the asymptotic normality of these estimators and discuss the trade-off between statistical efficiency and computational complexity for practical uncertainty quantification. Both results allow for nonuniform and inhomogeneous comparison graphs with varying edge sizes and different asymptotic orders of edge probabilities. We verify our theoretical findings by conducting detailed numerical experiments.
Extended Dynamic Mode Decomposition (EDMD) is a data-driven tool for forecasting and model reduction of dynamics, which has been extensively taken up in the physical sciences. While the method is conceptually simple, in deterministic chaos it is unclear what its properties are or even what it converges to. In particular, it is not clear how EDMD's least-squares approximation treats the classes of regular functions needed to make sense of chaotic dynamics. We develop for the first time a general, rigorous theory of EDMD on the simplest examples of chaotic maps: analytic expanding maps of the circle. To do this, we prove a new, basic approximation result in the theory of orthogonal polynomials on the unit circle (OPUC) and apply methods from transfer operator theory. We show that in the infinite-data limit, the least-squares projection error is exponentially small for trigonometric polynomial observable dictionaries. As a result, we show that the forecasts and Koopman spectral data produced using EDMD in this setting converge to the physically meaningful limits, exponentially fast with respect to the size of the dictionary. This demonstrates that with only a relatively small polynomial dictionary, EDMD can be very effective, even when the sampling measure is not uniform. Furthermore, our OPUC result suggests that data-based least-squares projections may be a very effective approximation strategy.
The fundamental problem of weighted sampling involves sampling of satisfying assignments of Boolean formulas, which specify sampling sets, and according to distributions defined by pre-specified weight functions to weight functions. The tight integration of sampling routines in various applications has highlighted the need for samplers to be incremental, i.e., samplers are expected to handle updates to weight functions. The primary contribution of this work is an efficient knowledge compilation-based weighted sampler, INC, designed for incremental sampling. INC builds on top of the recently proposed knowledge compilation language, OBDD[AND], and is accompanied by rigorous theoretical guarantees. Our extensive experiments demonstrate that INC is faster than state-of-the-art approach for majority of the evaluation. In particular, we observed a median of 1.69X runtime improvement over the prior state-of-the-art approach.
We address the problem of monitoring a set of binary stochastic processes and generating an alert when the number of anomalies among them exceeds a threshold. For this, the decision-maker selects and probes a subset of the processes to obtain noisy estimates of their states (normal or anomalous). Based on the received observations, the decisionmaker first determines whether to declare that the number of anomalies has exceeded the threshold or to continue taking observations. When the decision is to continue, it then decides whether to collect observations at the next time instant or defer it to a later time. If it chooses to collect observations, it further determines the subset of processes to be probed. To devise this three-step sequential decision-making process, we use a Bayesian formulation wherein we learn the posterior probability on the states of the processes. Using the posterior probability, we construct a Markov decision process and solve it using deep actor-critic reinforcement learning. Via numerical experiments, we demonstrate the superior performance of our algorithm compared to the traditional model-based algorithms.
Detection of the outliers is pivotal for any machine learning model deployed and operated in real-world. It is essential for the Deep Neural Networks that were shown to be overconfident with such inputs. Moreover, even deep generative models that allow estimation of the probability density of the input fail in achieving this task. In this work, we concentrate on the specific type of these models: Variational Autoencoders (VAEs). First, we unveil a significant theoretical flaw in the assumption of the classical VAE model. Second, we enforce an accommodating topological property to the image of the deep neural mapping to the latent space: compactness to alleviate the flaw and obtain the means to provably bound the image within the determined limits by squeezing both inliers and outliers together. We enforce compactness using two approaches: (i) Alexandroff extension and (ii) fixed Lipschitz continuity constant on the mapping of the encoder of the VAEs. Finally and most importantly, we discover that the anomalous inputs predominantly tend to land on the vacant latent holes within the compact space, enabling their successful identification. For that reason, we introduce a specifically devised score for hole detection and evaluate the solution against several baseline benchmarks achieving promising results.
Multivariate sequential data collected in practice often exhibit temporal irregularities, including nonuniform time intervals and component misalignment. However, if uneven spacing and asynchrony are endogenous characteristics of the data rather than a result of insufficient observation, the information content of these irregularities plays a defining role in characterizing the multivariate dependence structure. Existing approaches for probabilistic forecasting either overlook the resulting statistical heterogeneities, are susceptible to imputation biases, or impose parametric assumptions on the data distribution. This paper proposes an end-to-end solution that overcomes these limitations by allowing the observation arrival times to play the central role of model construction, which is at the core of temporal irregularities. To acknowledge temporal irregularities, we first enable unique hidden states for components so that the arrival times can dictate when, how, and which hidden states to update. We then develop a conditional flow representation to non-parametrically represent the data distribution, which is typically non-Gaussian, and supervise this representation by carefully factorizing the log-likelihood objective to select conditional information that facilitates capturing time variation and path dependency. The broad applicability and superiority of the proposed solution are confirmed by comparing it with existing approaches through ablation studies and testing on real-world datasets.
Traditional techniques for calculating outstanding claim liabilities such as the chain ladder are notoriously at risk of being distorted by outliers in past claims data. Unfortunately, the literature in robust methods of reserving is scant, with notable exceptions such as Verdonck and Debruyne (2011) and Verdonck and Van Wouwe (2011). In this paper, we put forward two alternative robust bivariate chain-ladder techniques to extend the approach of Verdonck and Van Wouwe (2011). The first technique is based on Adjusted Outlyingness (Hubert and Van der Veeken, 2008) and explicitly incorporates skewness into the analysis whilst providing a unique measure of outlyingness for each observation. The second technique is based on bagdistance (Hubert et al., 2016) which is derived from the bagplot however is able to provide a unique measure of outlyingness and a means to adjust outlying observations based on this measure. Furthermore, we extend our robust bivariate chain-ladder approach to an N-dimensional framework. The implementation of the methods, especially beyond bivariate, is not trivial. This is illustrated on a trivariate data set from Australian general insurers, and results under the different outlier detection and treatment mechanisms are compared.
Class Incremental Learning (CIL) aims at learning a multi-class classifier in a phase-by-phase manner, in which only data of a subset of the classes are provided at each phase. Previous works mainly focus on mitigating forgetting in phases after the initial one. However, we find that improving CIL at its initial phase is also a promising direction. Specifically, we experimentally show that directly encouraging CIL Learner at the initial phase to output similar representations as the model jointly trained on all classes can greatly boost the CIL performance. Motivated by this, we study the difference between a na\"ively-trained initial-phase model and the oracle model. Specifically, since one major difference between these two models is the number of training classes, we investigate how such difference affects the model representations. We find that, with fewer training classes, the data representations of each class lie in a long and narrow region; with more training classes, the representations of each class scatter more uniformly. Inspired by this observation, we propose Class-wise Decorrelation (CwD) that effectively regularizes representations of each class to scatter more uniformly, thus mimicking the model jointly trained with all classes (i.e., the oracle model). Our CwD is simple to implement and easy to plug into existing methods. Extensive experiments on various benchmark datasets show that CwD consistently and significantly improves the performance of existing state-of-the-art methods by around 1\% to 3\%. Code will be released.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.