The simulation of supersonic or hypersonic flows often suffers from numerical shock instabilities if the flow field contains strong shocks, limiting the further application of shock-capturing schemes. In this paper, we develop the unified matrix stability analysis method for schemes with three-point stencils and present MSAT, an open-source tool to quantitatively analyze the shock instability problem. Based on the finite-volume approach on the structured grid, MSAT can be employed to investigate the mechanism of the shock instability problem, evaluate the robustness of numerical schemes, and then help to develop robust schemes. Also, MSAT has the ability to analyze the practical simulation of supersonic or hypersonic flows, evaluate whether it will suffer from shock instabilities, and then assist in selecting appropriate numerical schemes accordingly. As a result, MSAT is a helpful tool that can investigate the shock instability problem and help to cure it.
We tackle the problem of sampling from intractable high-dimensional density functions, a fundamental task that often appears in machine learning and statistics. We extend recent sampling-based approaches that leverage controlled stochastic processes to model approximate samples from these target densities. The main drawback of these approaches is that the training objective requires full trajectories to compute, resulting in sluggish credit assignment issues due to use of entire trajectories and a learning signal present only at the terminal time. In this work, we present Diffusion Generative Flow Samplers (DGFS), a sampling-based framework where the learning process can be tractably broken down into short partial trajectory segments, via parameterizing an additional "flow function". Our method takes inspiration from the theory developed for generative flow networks (GFlowNets), allowing us to make use of intermediate learning signals and benefit from off-policy exploration capabilities. Through a variety of challenging experiments, we demonstrate that DGFS results in more accurate estimates of the normalization constant than closely-related prior methods.
We present a priori error estimates for a multirate time-stepping scheme for coupled differential equations. The discretization is based on Galerkin methods in time using two different time meshes for two parts of the problem. We aim at surface coupled multiphysics problems like two-phase flows. Special focus is on the handling of the interface coupling to guarantee a coercive formulation as key to optimal order error estimates. In a sequence of increasing complexity, we begin with the coupling of two ordinary differential equations, coupled heat conduction equation, and finally a coupled Stokes problem. For this we show optimal multi-rate estimates in velocity and a suboptimal result in pressure. The a priori estimates prove that the multirate method decouples the two subproblems exactly. This is the basis for adaptive methods which can choose optimal lattices for the respective subproblems.
Approximated forms of the RII and RIII redistribution matrices are frequently applied to simplify the numerical solution of the radiative transfer problem for polarized radiation, taking partial frequency redistribution (PRD) effects into account. A widely used approximation for RIII is to consider its expression under the assumption of complete frequency redistribution (CRD) in the observer frame (RIII CRD). The adequacy of this approximation for modeling the intensity profiles has been firmly established. By contrast, its suitability for modeling scattering polarization signals has only been analyzed in a few studies, considering simplified settings. In this work, we aim at quantitatively assessing the impact and the range of validity of the RIII CRD approximation in the modeling of scattering polarization. Methods. We first present an analytic comparison between RIII and RIII CRD. We then compare the results of radiative transfer calculations, out of local thermodynamic equilibrium, performed with RIII and RIII CRD in realistic 1D atmospheric models. We focus on the chromospheric Ca i line at 4227 A and on the photospheric Sr i line at 4607 A.
To reduce the dimensionality of the functional covariate, functional principal component analysis plays a key role, however, there is uncertainty on the number of principal components. Model averaging addresses this uncertainty by taking a weighted average of the prediction obtained from a set of candidate models. In this paper, we develop an optimal model averaging approach that selects the weights by minimizing a $K$-fold cross-validation criterion. We prove the asymptotic optimality of the selected weights in terms of minimizing the excess final prediction error, which greatly improves the usual asymptotic optimality in terms of minimizing the final prediction error in the literature. When the true regression relationship belongs to the set of candidate models, we provide the consistency of the averaged estimators. Numerical studies indicate that in most cases the proposed method performs better than other model selection and averaging methods, especially for extreme quantiles.
Hamilton-Jacobi (HJ) partial differential equations (PDEs) have diverse applications spanning physics, optimal control, game theory, and imaging sciences. This research introduces a first-order optimization-based technique for HJ PDEs, which formulates the time-implicit update of HJ PDEs as saddle point problems. We remark that the saddle point formulation for HJ equations is aligned with the primal-dual formulation of optimal transport and potential mean-field games (MFGs). This connection enables us to extend MFG techniques and design numerical schemes for solving HJ PDEs. We employ the primal-dual hybrid gradient (PDHG) method to solve the saddle point problems, benefiting from the simple structures that enable fast computations in updates. Remarkably, the method caters to a broader range of Hamiltonians, encompassing non-smooth and spatiotemporally dependent cases. The approach's effectiveness is verified through various numerical examples in both one-dimensional and two-dimensional examples, such as quadratic and $L^1$ Hamiltonians with spatial and time dependence.
Nowadays, numerical models are widely used in most of engineering fields to simulate the behaviour of complex systems, such as for example power plants or wind turbine in the energy sector. Those models are nevertheless affected by uncertainty of different nature (numerical, epistemic) which can affect the reliability of their predictions. We develop here a new method for quantifying conditional parameter uncertainty within a chain of two numerical models in the context of multiphysics simulation. More precisely, we aim to calibrate the parameters $\theta$ of the second model of the chain conditionally on the value of parameters $\lambda$ of the first model, while assuming the probability distribution of $\lambda$ is known. This conditional calibration is carried out from the available experimental data of the second model. In doing so, we aim to quantify as well as possible the impact of the uncertainty of $\lambda$ on the uncertainty of $\theta$. To perform this conditional calibration, we set out a nonparametric Bayesian formalism to estimate the functional dependence between $\theta$ and $\lambda$, denoted by $\theta(\lambda)$. First, each component of $\theta(\lambda)$ is assumed to be the realization of a Gaussian process prior. Then, if the second model is written as a linear function of $\theta(\lambda)$, the Bayesian machinery allows us to compute analytically the posterior predictive distribution of $\theta(\lambda)$ for any set of realizations $\lambda$. The effectiveness of the proposed method is illustrated on several analytical examples.
Semitopologies model consensus in distributed system by equating the notion of a quorum -- a set of participants sufficient to make local progress -- with that of an open set. This yields a topology-like theory of consensus, but semitopologies generalise topologies, since the intersection of two quorums need not necessarily be a quorum. The semitopological model of consensus is naturally heterogeneous and local, just like topologies can be heterogenous and local, and for the same reasons: points may have different quorums and there is no restriction that open sets / quorums be uniformly generated (e.g. open sets can be something other than two-thirds majorities of the points in the space). Semiframes are an algebraic abstraction of semitopologies. They are to semitopologies as frames are to topologies. We give a notion of semifilter, which plays a role analogous to filters, and show how to build a semiframe out of the open sets of a semitopology, and a semitopology out of the semifilters of a semiframe. We define suitable notions of category and morphism and prove a categorical duality between (sober) semiframes and (spatial) semitopologies, and investigate well-behavedness properties on semitopologies and semiframes across the duality. Surprisingly, the structure of semiframes is not what one might initially expect just from looking at semitopologies, and the canonical structure required for the duality result -- a compatibility relation *, generalising sets intersection -- is also canonical for expressing well-behavedness properties. Overall, we deliver a new categorical, algebraic, abstract framework within which to study consensus on distributed systems, and which is also simply interesting to consider as a mathematical theory in its own right.
We propose a new method to compare survival data based on Higher Criticism (HC) of P-values obtained from many exact hypergeometric tests. The method can accommodate censorship and is sensitive to moderate differences in some unknown and relatively few time intervals, attaining much better power against such differences than the log-rank test and other tests that are popular under non-proportional hazard alternatives. We demonstrate the usefulness of the HC-based test in detecting rare differences compared to existing tests using simulated data and using actual gene expression data. Additionally, we analyze the asymptotic power of our method under a piece-wise homogeneous exponential decay model with rare and weak departures, describing two groups experiencing failure rates that are usually identical over time except in a few unknown instances in which the second group's failure rate is higher. Under an asymptotic calibration of the model's parameters, the HC-based test's power experiences a phase transition across the plane involving the rarity and intensity parameters that mirrors the phase transition in a two-sample rare and weak normal means setting. In particular, the phase transition curve of our test indicates a larger region in which it is fully powered than the corresponding region of the log-rank test. %The latter attains a phase transition curve that is analogous to a test based on Fisher's combination statistic of the hypergeometric P-values. %To our knowledge, this is the first analysis of a rare and weak signal detection model that involves individually dependent effects in a non-Gaussian setting.
We introduce a flexible method to simultaneously infer both the drift and volatility functions of a discretely observed scalar diffusion. We introduce spline bases to represent these functions and develop a Markov chain Monte Carlo algorithm to infer, a posteriori, the coefficients of these functions in the spline basis. A key innovation is that we use spline bases to model transformed versions of the drift and volatility functions rather than the functions themselves. The output of the algorithm is a posterior sample of plausible drift and volatility functions that are not constrained to any particular parametric family. The flexibility of this approach provides practitioners a powerful investigative tool, allowing them to posit a variety of parametric models to better capture the underlying dynamics of their processes of interest. We illustrate the versatility of our method by applying it to challenging datasets from finance, paleoclimatology, and astrophysics. In view of the parametric diffusion models widely employed in the literature for those examples, some of our results are surprising since they call into question some aspects of these models.
We develop a numerical method for the Westervelt equation, an important equation in nonlinear acoustics, in the form where the attenuation is represented by a class of non-local in time operators. A semi-discretisation in time based on the trapezoidal rule and A-stable convolution quadrature is stated and analysed. Existence and regularity analysis of the continuous equations informs the stability and error analysis of the semi-discrete system. The error analysis includes the consideration of the singularity at $t = 0$ which is addressed by the use of a correction in the numerical scheme. Extensive numerical experiments confirm the theory.