亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the emergence of privacy leaks in federated learning, secure aggregation protocols that mainly adopt either homomorphic encryption or threshold secret sharing have been widely developed for federated learning to protect the privacy of the local training data of each client. However, these existing protocols suffer from many shortcomings, such as the dependence on a trusted third party, the vulnerability to clients being corrupted, low efficiency, the trade-off between security and fault tolerance, etc. To solve these disadvantages, we propose an efficient and multi-private key secure aggregation scheme for federated learning. Specifically, we skillfully modify the variant ElGamal encryption technique to achieve homomorphic addition operation, which has two important advantages: 1) The server and each client can freely select public and private keys without introducing a trust third party and 2) Compared to the variant ElGamal encryption, the plaintext space is relatively large, which is more suitable for the deep model. Besides, for the high dimensional deep model parameter, we introduce a super-increasing sequence to compress multi-dimensional data into 1-D, which can greatly reduce encryption and decryption times as well as communication for ciphertext transmission. Detailed security analyses show that our proposed scheme achieves the semantic security of both individual local gradients and the aggregated result while achieving optimal robustness in tolerating both client collusion and dropped clients. Extensive simulations demonstrate that the accuracy of our scheme is almost the same as the non-private approach, while the efficiency of our scheme is much better than the state-of-the-art homomorphic encryption-based secure aggregation schemes. More importantly, the efficiency advantages of our scheme will become increasingly prominent as the number of model parameters increases.

相關內容

This paper focuses on approximation and learning performance analysis for deep convolutional neural networks with zero-padding and max-pooling. We prove that, to approximate $r$-smooth function, the approximation rates of deep convolutional neural networks with depth $L$ are of order $ (L^2/\log L)^{-2r/d} $, which is optimal up to a logarithmic factor. Furthermore, we deduce almost optimal learning rates for implementing empirical risk minimization over deep convolutional neural networks.

Simulation is essential to reinforcement learning (RL) before implementation in the real world, especially for safety-critical applications like robot manipulation. Conventionally, RL agents are sensitive to the discrepancies between the simulation and the real world, known as the sim-to-real gap. The application of domain randomization, a technique used to fill this gap, is limited to the imposition of heuristic-randomized models. {We investigate the properties of intrinsic stochasticity of real-time simulation (RT-IS) of off-the-shelf simulation software and its potential to improve RL performance. This improvement includes a higher tolerance to noise and model imprecision and superiority to conventional domain randomization in terms of ease of use and automation. Firstly, we conduct analytical studies to measure the correlation of RT-IS with the utilization of computer hardware and validate its comparability with the natural stochasticity of a physical robot. Then, we exploit the RT-IS feature in the training of an RL agent. The simulation and physical experiment results verify the feasibility and applicability of RT-IS to robust agent training for robot manipulation tasks. The RT-IS-powered RL agent outperforms conventional agents on robots with modeling uncertainties. RT-IS requires less heuristic randomization, is not task-dependent, and achieves better generalizability than the conventional domain-randomization-powered agents. Our findings provide a new perspective on the sim-to-real problem in practical applications like robot manipulation tasks.

Despite the significant research efforts on trajectory prediction for automated driving, limited work exists on assessing the prediction reliability. To address this limitation we propose an approach that covers two sources of error, namely novel situations with out-of-distribution (OOD) detection and the complexity in in-distribution (ID) situations with uncertainty estimation. We introduce two modules next to an encoder-decoder network for trajectory prediction. Firstly, a Gaussian mixture model learns the probability density function of the ID encoder features during training, and then it is used to detect the OOD samples in regions of the feature space with low likelihood. Secondly, an error regression network is applied to the encoder, which learns to estimate the trajectory prediction error in supervised training. During inference, the estimated prediction error is used as the uncertainty. In our experiments, the combination of both modules outperforms the prior work in OOD detection and uncertainty estimation, on the Shifts robust trajectory prediction dataset by $2.8 \%$ and $10.1 \%$, respectively. The code is publicly available.

Progress in artificial intelligence and machine learning over the past decade has been driven by the ability to train larger deep neural networks (DNNs), leading to a compute demand that far exceeds the growth in hardware performance afforded by Moore's law. Training DNNs is an extremely memory-intensive process, requiring not just the model weights but also activations and gradients for an entire minibatch to be stored. The need to provide high-density and low-leakage on-chip memory motivates the exploration of emerging non-volatile memory for training accelerators. Spin-Transfer-Torque MRAM (STT-MRAM) offers several desirable properties for training accelerators, including 3-4x higher density than SRAM, significantly reduced leakage power, high endurance and reasonable access time. On the one hand, MRAM write operations require high write energy and latency due to the need to ensure reliable switching. In this study, we perform a comprehensive device-to-system evaluation and co-optimization of STT-MRAM for efficient ML training accelerator design. We devised a cross-layer simulation framework to evaluate the effectiveness of STT-MRAM as a scratchpad replacing SRAM in a systolic-array-based DNN accelerator. To address the inefficiency of writes in STT-MRAM, we propose to reduce write voltage and duration. To evaluate the ensuing accuracy-efficiency trade-off, we conduct a thorough analysis of the error tolerance of input activations, weights, and errors during the training. We propose heterogeneous memory configurations that enable training convergence with good accuracy. We show that MRAM provide up to 15-22x improvement in system level energy across a suite of DNN benchmarks under iso-capacity and iso-area scenarios. Further optimizing STT-MRAM write operations can provide over 2x improvement in write energy for minimal degradation in application-level training accuracy.

This study investigated the potential of end-to-end deep learning tools as a more effective substitute for FEM in predicting stress-strain fields within 2D cross sections of arterial wall. We first proposed a U-Net based fully convolutional neural network (CNN) to predict the von Mises stress and strain distribution based on the spatial arrangement of calcification within arterial wall cross-sections. Further, we developed a conditional generative adversarial network (cGAN) to enhance, particularly from the perceptual perspective, the prediction accuracy of stress and strain field maps for arterial walls with various calcification quantities and spatial configurations. On top of U-Net and cGAN, we also proposed their ensemble approaches, respectively, to further improve the prediction accuracy of field maps. Our dataset, consisting of input and output images, was generated by implementing boundary conditions and extracting stress-strain field maps. The trained U-Net models can accurately predict von Mises stress and strain fields, with structural similarity index scores (SSIM) of 0.854 and 0.830 and mean squared errors of 0.017 and 0.018 for stress and strain, respectively, on a reserved test set. Meanwhile, the cGAN models in a combination of ensemble and transfer learning techniques demonstrate high accuracy in predicting von Mises stress and strain fields, as evidenced by SSIM scores of 0.890 for stress and 0.803 for strain. Additionally, mean squared errors of 0.008 for stress and 0.017 for strain further support the model's performance on a designated test set. Overall, this study developed a surrogate model for finite element analysis, which can accurately and efficiently predict stress-strain fields of arterial walls regardless of complex geometries and boundary conditions.

Despite the significant research efforts on trajectory prediction for automated driving, limited work exists on assessing the prediction reliability. To address this limitation we propose an approach that covers two sources of error, namely novel situations with out-of-distribution (OOD) detection and the complexity in in-distribution (ID) situations with uncertainty estimation. We introduce two modules next to an encoder-decoder network for trajectory prediction. Firstly, a Gaussian mixture model learns the probability density function of the ID encoder features during training, and then it is used to detect the OOD samples in regions of the feature space with low likelihood. Secondly, an error regression network is applied to the encoder, which learns to estimate the trajectory prediction error in supervised training. During inference, the estimated prediction error is used as the uncertainty. In our experiments, the combination of both modules outperforms the prior work in OOD detection and uncertainty estimation, on the Shifts robust trajectory prediction dataset by $2.8 \%$ and $10.1 \%$, respectively. The code is publicly available.

Matching problems with group-fairness constraints and diversity constraints have numerous applications such as in allocation problems, committee selection, school choice, etc. Moreover, online matching problems have lots of applications in ad allocations and other e-commerce problems like product recommendation in digital marketing. We study two problems involving assigning {\em items} to {\em platforms}, where items belong to various {\em groups} depending on their attributes; the set of items are available offline and the platforms arrive online. In the first problem, we study online matchings with {\em proportional fairness constraints}. Here, each platform on arrival should either be assigned a set of items in which the fraction of items from each group is within specified bounds or be assigned no items; the goal is to assign items to platforms in order to maximize the number of items assigned to platforms. In the second problem, we study online matchings with {\em diversity constraints}, i.e. for each platform, absolute lower bounds are specified for each group. Each platform on arrival should either be assigned a set of items that satisfy these bounds or be assigned no items; the goal is to maximize the set of platforms that get matched. We study approximation algorithms and hardness results for these problems. The technical core of our proofs is a new connection between these problems and the problem of matchings in hypergraphs. Our experimental evaluation shows the performance of our algorithms on real-world and synthetic datasets exceeds our theoretical guarantees.

Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

Ensembles over neural network weights trained from different random initialization, known as deep ensembles, achieve state-of-the-art accuracy and calibration. The recently introduced batch ensembles provide a drop-in replacement that is more parameter efficient. In this paper, we design ensembles not only over weights, but over hyperparameters to improve the state of the art in both settings. For best performance independent of budget, we propose hyper-deep ensembles, a simple procedure that involves a random search over different hyperparameters, themselves stratified across multiple random initializations. Its strong performance highlights the benefit of combining models with both weight and hyperparameter diversity. We further propose a parameter efficient version, hyper-batch ensembles, which builds on the layer structure of batch ensembles and self-tuning networks. The computational and memory costs of our method are notably lower than typical ensembles. On image classification tasks, with MLP, LeNet, and Wide ResNet 28-10 architectures, our methodology improves upon both deep and batch ensembles.

北京阿比特科技有限公司