亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Monte Carlo simulations of physics processes at particle colliders like the Large Hadron Collider at CERN take up a major fraction of the computational budget. For some simulations, a single data point takes seconds, minutes, or even hours to compute from first principles. Since the necessary number of data points per simulation is on the order of $10^9$ - $10^{12}$, machine learning regressors can be used in place of physics simulators to significantly reduce this computational burden. However, this task requires high-precision regressors that can deliver data with relative errors of less than $1\%$ or even $0.1\%$ over the entire domain of the function. In this paper, we develop optimal training strategies and tune various machine learning regressors to satisfy the high-precision requirement. We leverage symmetry arguments from particle physics to optimize the performance of the regressors. Inspired by ResNets, we design a Deep Neural Network with skip connections that outperform fully connected Deep Neural Networks. We find that at lower dimensions, boosted decision trees far outperform neural networks while at higher dimensions neural networks perform significantly better. We show that these regressors can speed up simulations by a factor of $10^3$ - $10^6$ over the first-principles computations currently used in Monte Carlo simulations. Additionally, using symmetry arguments derived from particle physics, we reduce the number of regressors necessary for each simulation by an order of magnitude. Our work can significantly reduce the training and storage burden of Monte Carlo simulations at current and future collider experiments.

相關內容

This work introduces a reduced order modeling (ROM) framework for the solution of parameterized second-order linear elliptic partial differential equations formulated on unfitted geometries. The goal is to construct efficient projection-based ROMs, which rely on techniques such as the reduced basis method and discrete empirical interpolation. The presence of geometrical parameters in unfitted domain discretizations entails challenges for the application of standard ROMs. Therefore, in this work we propose a methodology based on i) extension of snapshots on the background mesh and ii) localization strategies to decrease the number of reduced basis functions. The method we obtain is computationally efficient and accurate, while it is agnostic with respect to the underlying discretization choice. We test the applicability of the proposed framework with numerical experiments on two model problems, namely the Poisson and linear elasticity problems. In particular, we study several benchmarks formulated on two-dimensional, trimmed domains discretized with splines and we observe a significant reduction of the online computational cost compared to standard ROMs for the same level of accuracy. Moreover, we show the applicability of our methodology to a three-dimensional geometry of a linear elastic problem.

Deep learning surrogate models are being increasingly used in accelerating scientific simulations as a replacement for costly conventional numerical techniques. However, their use remains a significant challenge when dealing with real-world complex examples. In this work, we demonstrate three types of neural network architectures for efficient learning of highly non-linear deformations of solid bodies. The first two architectures are based on the recently proposed CNN U-NET and MAgNET (graph U-NET) frameworks which have shown promising performance for learning on mesh-based data. The third architecture is Perceiver IO, a very recent architecture that belongs to the family of attention-based neural networks--a class that has revolutionised diverse engineering fields and is still unexplored in computational mechanics. We study and compare the performance of all three networks on two benchmark examples, and show their capabilities to accurately predict the non-linear mechanical responses of soft bodies.

Label noise poses a serious threat to deep neural networks (DNNs). Employing robust loss function which reconciles fitting ability with robustness is a simple but effective strategy to handle this problem. However, the widely-used static trade-off between these two factors contradicts the dynamic nature of DNNs learning with label noise, leading to inferior performance. Therefore, we propose a dynamics-aware loss (DAL) to solve this problem. Considering that DNNs tend to first learn generalized patterns, then gradually overfit label noise, DAL strengthens the fitting ability initially, then gradually increases the weight of robustness. Moreover, at the later stage, we let DNNs put more emphasis on easy examples which are more likely to be correctly labeled than hard ones and introduce a bootstrapping term to further reduce the negative impact of label noise. Both the detailed theoretical analyses and extensive experimental results demonstrate the superiority of our method.

We propose two robust methods for testing hypotheses on unknown parameters of predictive regression models under heterogeneous and persistent volatility as well as endogenous, persistent and/or fat-tailed regressors and errors. The proposed robust testing approaches are applicable both in the case of discrete and continuous time models. Both of the methods use the Cauchy estimator to effectively handle the problems of endogeneity, persistence and/or fat-tailedness in regressors and errors. The difference between our two methods is how the heterogeneous volatility is controlled. The first method relies on robust t-statistic inference using group estimators of a regression parameter of interest proposed in Ibragimov and Muller, 2010. It is simple to implement, but requires the exogenous volatility assumption. To relax the exogenous volatility assumption, we propose another method which relies on the nonparametric correction of volatility. The proposed methods perform well compared with widely used alternative inference procedures in terms of their finite sample properties.

This paper considers estimating functional-coefficient models in panel quantile regression with individual effects, allowing the cross-sectional and temporal dependence for large panel observations. A latent group structure is imposed on the heterogenous quantile regression models so that the number of nonparametric functional coefficients to be estimated can be reduced considerably. With the preliminary local linear quantile estimates of the subject-specific functional coefficients, a classic agglomerative clustering algorithm is used to estimate the unknown group structure and an easy-to-implement ratio criterion is proposed to determine the group number. The estimated group number and structure are shown to be consistent. Furthermore, a post-grouping local linear smoothing method is introduced to estimate the group-specific functional coefficients, and the relevant asymptotic normal distribution theory is derived with a normalisation rate comparable to that in the literature. The developed methodologies and theory are verified through a simulation study and showcased with an application to house price data from UK local authority districts, which reveals different homogeneity structures at different quantile levels.

High-dimensional data can often display heterogeneity due to heteroscedastic variance or inhomogeneous covariate effects. Penalized quantile and expectile regression methods offer useful tools to detect heteroscedasticity in high-dimensional data. The former is computationally challenging due to the non-smooth nature of the check loss, and the latter is sensitive to heavy-tailed error distributions. In this paper, we propose and study (penalized) robust expectile regression (retire), with a focus on iteratively reweighted $\ell_1$-penalization which reduces the estimation bias from $\ell_1$-penalization and leads to oracle properties. Theoretically, we establish the statistical properties of the retire estimator under two regimes: (i) low-dimensional regime in which $d \ll n$; (ii) high-dimensional regime in which $s\ll n\ll d$ with $s$ denoting the number of significant predictors. In the high-dimensional setting, we carefully characterize the solution path of the iteratively reweighted $\ell_1$-penalized retire estimation, adapted from the local linear approximation algorithm for folded-concave regularization. Under a mild minimum signal strength condition, we show that after as many as $\log(\log d)$ iterations the final iterate enjoys the oracle convergence rate. At each iteration, the weighted $\ell_1$-penalized convex program can be efficiently solved by a semismooth Newton coordinate descent algorithm. Numerical studies demonstrate the competitive performance of the proposed procedure compared with either non-robust or quantile regression based alternatives.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司