The present paper evaluates the learning behaviour of a transformer-based neural network with regard to an irregular inflectional paradigm. We apply the paradigm cell filling problem to irregular patterns. We approach this problem using the morphological reinflection task and model it as a character sequence-to-sequence learning problem. The test case under investigation are irregular verbs in Spanish. Besides many regular verbs in Spanish L-shaped verbs the first person singular indicative stem irregularly matches the subjunctive paradigm, while other indicative forms remain unaltered. We examine the role of frequency during learning and compare models under differing input frequency conditions. We train the model on a corpus of Spanish with a realistic distribution of regular and irregular verbs to compare it with models trained on input with augmented distributions of (ir)regular words. We explore how the neural models learn this L-shaped pattern using post-hoc analyses. Our experiments show that, across frequency conditions, the models are surprisingly capable of learning the irregular pattern. Furthermore, our post-hoc analyses reveal the possible sources of errors. All code and data are available at \url{//anonymous.4open.science/r/modeling_spanish_acl-7567/} under MIT license.
Neural machine translation (NMT) systems amplify lexical biases present in their training data, leading to artificially impoverished language in output translations. These language-level characteristics render automatic translations different from text originally written in a language and human translations, which hinders their usefulness in for example creating evaluation datasets. Attempts to increase naturalness in NMT can fall short in terms of content preservation, where increased lexical diversity comes at the cost of translation accuracy. Inspired by the reinforcement learning from human feedback framework, we introduce a novel method that rewards both naturalness and content preservation. We experiment with multiple perspectives to produce more natural translations, aiming at reducing machine and human translationese. We evaluate our method on English-to-Dutch literary translation, and find that our best model produces translations that are lexically richer and exhibit more properties of human-written language, without loss in translation accuracy.
Computing power has evolved into a foundational and indispensable resource in the area of deep learning, particularly in tasks such as Face Recognition (FR) model training on large-scale datasets, where multiple GPUs are often a necessity. Recognizing this challenge, some FR methods have started exploring ways to compress the fully-connected layer in FR models. Unlike other approaches, our observations reveal that without prompt scheduling of the learning rate (LR) during FR model training, the loss curve tends to exhibit numerous stationary subsequences. To address this issue, we introduce a novel LR scheduler leveraging Exponential Moving Average (EMA) and Haar Convolutional Kernel (HCK) to eliminate stationary subsequences, resulting in a significant reduction in converging time. However, the proposed scheduler incurs a considerable computational overhead due to its time complexity. To overcome this limitation, we propose FastFace, a fast-converging scheduler with negligible time complexity, i.e. O(1) per iteration, during training. In practice, FastFace is able to accelerate FR model training to a quarter of its original time without sacrificing more than 1% accuracy, making large-scale FR training feasible even with just one single GPU in terms of both time and space complexity. Extensive experiments validate the efficiency and effectiveness of FastFace. The code is publicly available at: //github.com/amoonfana/FastFace
This paper explores the utility of diffusion-based models for anomaly detection, focusing on their efficacy in identifying deviations in both compact and high-resolution datasets. Diffusion-based architectures, including Denoising Diffusion Probabilistic Models (DDPMs) and Diffusion Transformers (DiTs), are evaluated for their performance using reconstruction objectives. By leveraging the strengths of these models, this study benchmarks their performance against traditional anomaly detection methods such as Isolation Forests, One-Class SVMs, and COPOD. The results demonstrate the superior adaptability, scalability, and robustness of diffusion-based methods in handling complex real-world anomaly detection tasks. Key findings highlight the role of reconstruction error in enhancing detection accuracy and underscore the scalability of these models to high-dimensional datasets. Future directions include optimizing encoder-decoder architectures and exploring multi-modal datasets to further advance diffusion-based anomaly detection.
Weighting with the inverse probability of censoring is an approach to deal with censoring in regression analyses where the outcome may be missing due to right-censoring. In this paper, three separate approaches involving this idea in a setting where the Kaplan--Meier estimator is used for estimating the censoring probability are compared. In more detail, the three approaches involve weighted regression, regression with a weighted outcome, and regression of a jack-knife pseudo-observation based on a weighted estimator. Expressions of the asymptotic variances are given in each case and the expressions are compared to each other and to the uncensored case. In terms of low asymptotic variance, a clear winner cannot be found. Which approach will have the lowest asymptotic variance depends on the censoring distribution. Expressions of the limit of the standard sandwich variance estimator in the three cases are also provided, revealing an overestimation under the implied assumptions.
This paper introduces a novel decomposition framework to explain heterogeneity in causal effects observed across different studies, considering both observational and randomized settings. We present a formal decomposition of between-study heterogeneity, identifying sources of variability in treatment effects across studies. The proposed methodology allows for robust estimation of causal parameters under various assumptions, addressing differences in pre-treatment covariate distributions, mediating variables, and the outcome mechanism. Our approach is validated through a simulation study and applied to data from the Moving to Opportunity (MTO) study, demonstrating its practical relevance. This work contributes to the broader understanding of causal inference in multi-study environments, with potential applications in evidence synthesis and policy-making.
This paper leverages various philosophical and ontological frameworks to explore the concept of embodied artificial general intelligence (AGI), its relationship to human consciousness, and the key role of the metaverse in facilitating this relationship. Several theoretical frameworks underpin this exploration, such as embodied cognition, Michael Levin's computational boundary of a "Self," Donald D. Hoffman's Interface Theory of Perception, and Bernardo Kastrup's analytical idealism, which lead to considering our perceived outer reality as a symbolic representation of alternate inner states of being, and where AGI could embody a different form of consciousness with a larger computational boundary. The paper further discusses the developmental stages of AGI, the requirements for the emergence of an embodied AGI, the importance of a calibrated symbolic interface for AGI, and the key role played by the metaverse, decentralized systems, open-source blockchain technology, as well as open-source AI research. It also explores the idea of a feedback loop between AGI and human users in metaverse spaces as a tool for AGI calibration, as well as the role of local homeostasis and decentralized governance as preconditions for achieving a stable embodied AGI. The paper concludes by emphasizing the importance of achieving a certain degree of harmony in human relations and recognizing the interconnectedness of humanity at a global level, as key prerequisites for the emergence of a stable embodied AGI.
This study examines the shift in the scientific community from X (formerly Twitter) to Bluesky, its impact on scientific communication, and consequently on social metrics (altmetrics). Analyzing 10,174 publications from multidisciplinary and library and information science (LIS) journals in 2024, the results reveal a notable increase in Bluesky activity for multidisciplinary journals in November 2024, likely influenced by political and platform changes, with mentions doubling or quadrupling for journals like Nature and Science. In LIS, the adoption of Bluesky is more limited and shows significant variations across journals, suggesting discipline-specific adoption patterns. However, overall engagement on Bluesky remains significantly lower than on X. While X currently dominates altmetric mentions, the observed growth on Bluesky suggests a potential shift in the future, underscoring its emerging role in academic dissemination and the challenges of adapting scholarly communication metrics across evolving platforms.
We develop a unifying framework for information-theoretic lower bound in statistical estimation and interactive decision making. Classical lower bound techniques -- such as Fano's method, Le Cam's method, and Assouad's lemma -- are central to the study of minimax risk in statistical estimation, yet are insufficient to provide tight lower bounds for \emph{interactive decision making} algorithms that collect data interactively (e.g., algorithms for bandits and reinforcement learning). Recent work of Foster et al. (2021, 2023) provides minimax lower bounds for interactive decision making using seemingly different analysis techniques from the classical methods. These results -- which are proven using a complexity measure known as the \emph{Decision-Estimation Coefficient} (DEC) -- capture difficulties unique to interactive learning, yet do not recover the tightest known lower bounds for passive estimation. We propose a unified view of these distinct methodologies through a new lower bound approach called \emph{interactive Fano method}. As an application, we introduce a novel complexity measure, the \emph{Fractional Covering Number}, which facilitates the new lower bounds for interactive decision making that extend the DEC methodology by incorporating the complexity of estimation. Using the fractional covering number, we (i) provide a unified characterization of learnability for \emph{any} stochastic bandit problem, (ii) close the remaining gap between the upper and lower bounds in Foster et al. (2021, 2023) (up to polynomial factors) for any interactive decision making problem in which the underlying model class is convex.
This paper presents pragmatic solutions for verifying complex mathematical algorithms implemented in hardware in an efficient and effective manner. Maximizing leverage of a known-answer-test strategy, based on predefined data scenarios combined with design-for-verification modes, we demonstrate how to find and isolate concept and design bugs early in the flow. The solutions presented are based on real project experience with single chip radar sensors for a variety of applications. The verification environments supporting the presented strategies are based on SystemVerilog and the Universal Verification Methodology.
This paper presents GARD, an upper limb end-effector rehabilitation device developed for stroke patients. GARD offers assistance force along or towards a 2D trajectory during physical therapy sessions. GARD employs a non-backdrivable mechanism with novel motor velocity-control-based algorithms, which offers superior control precision and stability. To our knowledge, this innovative technical route has not been previously explored in rehabilitation robotics. In alignment with the new design, GARD features two novel control algorithms: Implicit Euler Velocity Control (IEVC) algorithm and a generalized impedance control algorithm. These algorithms achieve O(n) runtime complexity for any arbitrary trajectory. The system has demonstrated a mean absolute error of 0.023mm in trajectory-following tasks and 0.14mm in trajectory-restricted free moving tasks. The proposed upper limb rehabilitation device offers all the functionalities of existing commercial devices with superior performance. Additionally, GARD provides unique functionalities such as area-restricted free moving and dynamic Motion Restriction Map interaction. This device holds strong potential for widespread clinical use, potentially improving rehabilitation outcomes for stroke patients.