Shannon Entropy is the preeminent tool for measuring the level of uncertainty (and conversely, information content) in a random variable. In the field of communications, entropy can be used to express the information content of given signals (represented as time series) by considering random variables which sample from specified subsequences. In this paper, we will discuss how an entropy variant, the \textit{permutation entropy} can be used to study and classify radio frequency signals in a noisy environment. The permutation entropy is the entropy of the random variable which samples occurrences of permutation patterns from time series given a fixed window length, making it a function of the distribution of permutation patterns. Since the permutation entropy is a function of the relative order of data, it is (global) amplitude agnostic and thus allows for comparison between signals at different scales. This article is intended to describe a permutation patterns approach to a data driven problem in radio frequency communications research, and includes a primer on all non-permutation pattern specific background. An empirical analysis of the methods herein on radio frequency data is included. No prior knowledge of signals analysis is assumed, and permutation pattern specific notation will be included. This article serves as a self-contained introduction to the relationship between permutation patterns, entropy, and signals analysis for studying radio frequency signals and includes results on a classification task.
Solving NP-hard/complete combinatorial problems with neural networks is a challenging research area that aims to surpass classical approximate algorithms. The long-term objective is to outperform hand-designed heuristics for NP-hard/complete problems by learning to generate superior solutions solely from training data. Current neural-based methods for solving CO problems often overlook the inherent "algorithmic" nature of the problems. In contrast, heuristics designed for CO problems, e.g. TSP, frequently leverage well-established algorithms, such as those for finding the minimum spanning tree. In this paper, we propose leveraging recent advancements in neural algorithmic reasoning to improve the learning of CO problems. Specifically, we suggest pre-training our neural model on relevant algorithms before training it on CO instances. Our results demonstrate that by using this learning setup, we achieve superior performance compared to non-algorithmically informed deep learning models.
One relevant aspect in the development of the Semantic Web framework is the achievement of a real inter-agents communication capability at the semantic level. The agents should be able to communicate and understand each other using standard communication protocols freely, that is, without needing a laborious a priori preparation, before the communication takes place. For that setting we present in this paper a proposal that promotes to describe standard communication protocols using Semantic Web technology (specifically, OWL-DL and SWRL). Those protocols are constituted by communication acts. In our proposal those communication acts are described as terms that belong to a communication acts ontology, that we have developed, called CommOnt. The intended semantics associated to the communication acts in the ontology is expressed through social commitments that are formalized as fluents in the Event Calculus. In summary, OWL-DL reasoners and rule engines help in our proposal for reasoning about protocols. We define some comparison relationships (dealing with notions of equivalence and specialization) between protocols used by agents from different systems.
We propose a new method for estimating subject-specific mean functions from longitudinal data. We aim to do this in a flexible manner (without restrictive assumptions about the shape of the subject-specific mean functions), while exploiting similarities in the mean functions between different subjects. Functional principal components analysis fulfils both requirements, and methods for functional principal components analysis have been developed for longitudinal data. However, we find that these existing methods sometimes give fitted mean functions which are more complex than needed to provide a good fit to the data. We develop a new penalised likelihood approach to flexibly model longitudinal data, with a penalty term to control the balance between fit to the data and smoothness of the subject-specific mean curves. We run simulation studies to demonstrate that the new method substantially improves the quality of inference relative to existing methods across a range of examples, and apply the method to data on changes in body composition in adolescent girls.
In Information Retrieval, and more generally in Natural Language Processing, adapting models to specific domains is conducted through fine-tuning. Despite the successes achieved by this method and its versatility, the need for human-curated and labeled data makes it impractical to transfer to new tasks, domains, and/or languages when training data doesn't exist. Using the model without training (zero-shot) is another option that however suffers an effectiveness cost, especially in the case of first-stage retrievers. Numerous research directions have emerged to tackle these issues, most of them in the context of adapting to a task or a language. However, the literature is scarcer for domain (or topic) adaptation. In this paper, we address this issue of cross-topic discrepancy for a sparse first-stage retriever by transposing a method initially designed for language adaptation. By leveraging pre-training on the target data to learn domain-specific knowledge, this technique alleviates the need for annotated data and expands the scope of domain adaptation. Despite their relatively good generalization ability, we show that even sparse retrievers can benefit from our simple domain adaptation method.
Machinery for data analysis often requires a numeric representation of the input. Towards that, a common practice is to embed components of structured data into a high-dimensional vector space. We study the embedding of the tuples of a relational database, where existing techniques are often based on optimization tasks over a collection of random walks from the database. The focus of this paper is on the recent FoRWaRD algorithm that is designed for dynamic databases, where walks are sampled by following foreign keys between tuples. Importantly, different walks have different schemas, or "walk schemes", that are derived by listing the relations and attributes along the walk. Also importantly, different walk schemes describe relationships of different natures in the database. We show that by focusing on a few informative walk schemes, we can obtain tuple embedding significantly faster, while retaining the quality. We define the problem of scheme selection for tuple embedding, devise several approaches and strategies for scheme selection, and conduct a thorough empirical study of the performance over a collection of downstream tasks. Our results confirm that with effective strategies for scheme selection, we can obtain high-quality embeddings considerably (e.g., three times) faster, preserve the extensibility to newly inserted tuples, and even achieve an increase in the precision of some tasks.
Nucleus decompositions have been shown to be a useful tool for finding dense subgraphs. The coreness value of a clique represents its density based on the number of other cliques it is adjacent to. One useful output of nucleus decomposition is to generate a hierarchy among dense subgraphs at different resolutions. However, existing parallel algorithms for nucleus decomposition do not generate this hierarchy, and only compute the coreness values. This paper presents a scalable parallel algorithm for hierarchy construction, with practical optimizations, such as interleaving the coreness computation with hierarchy construction and using a concurrent union-find data structure in an innovative way to generate the hierarchy. We also introduce a parallel approximation algorithm for nucleus decomposition, which achieves much lower span in theory and better performance in practice. We prove strong theoretical bounds on the work and span (parallel time) of our algorithms. On a 30-core machine with two-way hyper-threading on real-world graphs, our parallel hierarchy construction algorithm achieves up to a 58.84x speedup over the state-of-the-art sequential hierarchy construction algorithm by Sariyuce et al. and up to a 30.96x self-relative parallel speedup. On the same machine, our approximation algorithm achieves a 3.3x speedup over our exact algorithm, while generating coreness estimates with a multiplicative error of 1.33x on average.
With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.
The information bottleneck (IB) method is a technique for extracting information that is relevant for predicting the target random variable from the source random variable, which is typically implemented by optimizing the IB Lagrangian that balances the compression and prediction terms. However, the IB Lagrangian is hard to optimize, and multiple trials for tuning values of Lagrangian multiplier are required. Moreover, we show that the prediction performance strictly decreases as the compression gets stronger during optimizing the IB Lagrangian. In this paper, we implement the IB method from the perspective of supervised disentangling. Specifically, we introduce Disentangled Information Bottleneck (DisenIB) that is consistent on compressing source maximally without target prediction performance loss (maximum compression). Theoretical and experimental results demonstrate that our method is consistent on maximum compression, and performs well in terms of generalization, robustness to adversarial attack, out-of-distribution detection, and supervised disentangling.
Relation prediction for knowledge graphs aims at predicting missing relationships between entities. Despite the importance of inductive relation prediction, most previous works are limited to a transductive setting and cannot process previously unseen entities. The recent proposed subgraph-based relation reasoning models provided alternatives to predict links from the subgraph structure surrounding a candidate triplet inductively. However, we observe that these methods often neglect the directed nature of the extracted subgraph and weaken the role of relation information in the subgraph modeling. As a result, they fail to effectively handle the asymmetric/anti-symmetric triplets and produce insufficient embeddings for the target triplets. To this end, we introduce a \textbf{C}\textbf{o}mmunicative \textbf{M}essage \textbf{P}assing neural network for \textbf{I}nductive re\textbf{L}ation r\textbf{E}asoning, \textbf{CoMPILE}, that reasons over local directed subgraph structures and has a vigorous inductive bias to process entity-independent semantic relations. In contrast to existing models, CoMPILE strengthens the message interactions between edges and entitles through a communicative kernel and enables a sufficient flow of relation information. Moreover, we demonstrate that CoMPILE can naturally handle asymmetric/anti-symmetric relations without the need for explosively increasing the number of model parameters by extracting the directed enclosing subgraphs. Extensive experiments show substantial performance gains in comparison to state-of-the-art methods on commonly used benchmark datasets with variant inductive settings.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.