Deep neural networks (DNNs) are known to be vulnerable to both backdoor attacks as well as adversarial attacks. In the literature, these two types of attacks are commonly treated as distinct problems and solved separately, since they belong to training-time and inference-time attacks respectively. However, in this paper we find an intriguing connection between them: for a model planted with backdoors, we observe that its adversarial examples have similar behaviors as its triggered images, i.e., both activate the same subset of DNN neurons. It indicates that planting a backdoor into a model will significantly affect the model's adversarial examples. Based on these observations, a novel Progressive Backdoor Erasing (PBE) algorithm is proposed to progressively purify the infected model by leveraging untargeted adversarial attacks. Different from previous backdoor defense methods, one significant advantage of our approach is that it can erase backdoor even when the clean extra dataset is unavailable. We empirically show that, against 5 state-of-the-art backdoor attacks, our PBE can effectively erase the backdoor without obvious performance degradation on clean samples and significantly outperforms existing defense methods.
Deep Neural Networks (DNNs) are increasingly applied in the real world in safety critical applications like advanced driver assistance systems. An example for such use case is represented by traffic sign recognition systems. At the same time, it is known that current DNNs can be fooled by adversarial attacks, which raises safety concerns if those attacks can be applied under realistic conditions. In this work we apply different black-box attack methods to generate perturbations that are applied in the physical environment and can be used to fool systems under different environmental conditions. To the best of our knowledge we are the first to combine a general framework for physical attacks with different black-box attack methods and study the impact of the different methods on the success rate of the attack under the same setting. We show that reliable physical adversarial attacks can be performed with different methods and that it is also possible to reduce the perceptibility of the resulting perturbations. The findings highlight the need for viable defenses of a DNN even in the black-box case, but at the same time form the basis for securing a DNN with methods like adversarial training which utilizes adversarial attacks to augment the original training data.
Bit-flip attacks (BFAs) have attracted substantial attention recently, in which an adversary could tamper with a small number of model parameter bits to break the integrity of DNNs. To mitigate such threats, a batch of defense methods are proposed, focusing on the untargeted scenarios. Unfortunately, they either require extra trustworthy applications or make models more vulnerable to targeted BFAs. Countermeasures against targeted BFAs, stealthier and more purposeful by nature, are far from well established. In this work, we propose Aegis, a novel defense method to mitigate targeted BFAs. The core observation is that existing targeted attacks focus on flipping critical bits in certain important layers. Thus, we design a dynamic-exit mechanism to attach extra internal classifiers (ICs) to hidden layers. This mechanism enables input samples to early-exit from different layers, which effectively upsets the adversary's attack plans. Moreover, the dynamic-exit mechanism randomly selects ICs for predictions during each inference to significantly increase the attack cost for the adaptive attacks where all defense mechanisms are transparent to the adversary. We further propose a robustness training strategy to adapt ICs to the attack scenarios by simulating BFAs during the IC training phase, to increase model robustness. Extensive evaluations over four well-known datasets and two popular DNN structures reveal that Aegis could effectively mitigate different state-of-the-art targeted attacks, reducing attack success rate by 5-10$\times$, significantly outperforming existing defense methods.
Deep Neural Networks (DNNs) have been extensively utilized in aerial detection. However, DNNs' sensitivity and vulnerability to maliciously elaborated adversarial examples have progressively garnered attention. Recently, physical attacks have gradually become a hot issue due to they are more practical in the real world, which poses great threats to some security-critical applications. In this paper, we take the first attempt to perform physical attacks in contextual form against aerial detection in the physical world. We propose an innovative contextual attack method against aerial detection in real scenarios, which achieves powerful attack performance and transfers well between various aerial object detectors without smearing or blocking the interested objects to hide. Based on the findings that the targets' contextual information plays an important role in aerial detection by observing the detectors' attention maps, we propose to make full use of the contextual area of the interested targets to elaborate contextual perturbations for the uncovered attacks in real scenarios. Extensive proportionally scaled experiments are conducted to evaluate the effectiveness of the proposed contextual attack method, which demonstrates the proposed method's superiority in both attack efficacy and physical practicality.
As a new realm of AI security, backdoor attack has drew growing attention research in recent years. It is well known that backdoor can be injected in a DNN model through the process of model training with poisoned dataset which is consist of poisoned sample. The injected model output correct prediction on benign samples yet behave abnormally on poisoned samples included trigger pattern. Most existing trigger of poisoned sample are visible and can be easily found by human visual inspection, and the trigger injection process will cause the feature loss of natural sample and trigger. To solve the above problems and inspire by spatial attention mechanism, we introduce a novel backdoor attack named SATBA, which is invisible and can minimize the loss of trigger to improve attack success rate and model accuracy. It extracts data features and generate trigger pattern related to clean data through spatial attention, poisons clean image by using a U-type models to plant a trigger into the original data. We demonstrate the effectiveness of our attack against three popular image classification DNNs on three standard datasets. Besides, we conduct extensive experiments about image similarity to show that our proposed attack can provide practical stealthiness which is critical to resist to backdoor defense.
Training deep neural networks (DNNs) usually requires massive training data and computational resources. Users who cannot afford this may prefer to outsource training to a third party or resort to publicly available pre-trained models. Unfortunately, doing so facilitates a new training-time attack (i.e., backdoor attack) against DNNs. This attack aims to induce misclassification of input samples containing adversary-specified trigger patterns. In this paper, we first conduct a layer-wise feature analysis of poisoned and benign samples from the target class. We find out that the feature difference between benign and poisoned samples tends to be maximum at a critical layer, which is not always the one typically used in existing defenses, namely the layer before fully-connected layers. We also demonstrate how to locate this critical layer based on the behaviors of benign samples. We then propose a simple yet effective method to filter poisoned samples by analyzing the feature differences between suspicious and benign samples at the critical layer. We conduct extensive experiments on two benchmark datasets, which confirm the effectiveness of our defense.
Deep neural networks (DNNs) are sensitive to adversarial examples, resulting in fragile and unreliable performance in the real world. Although adversarial training (AT) is currently one of the most effective methodologies to robustify DNNs, it is computationally very expensive (e.g., 5-10X costlier than standard training). To address this challenge, existing approaches focus on single-step AT, referred to as Fast AT, reducing the overhead of adversarial example generation. Unfortunately, these approaches are known to fail against stronger adversaries. To make AT computationally efficient without compromising robustness, this paper takes a different view of the efficient AT problem. Specifically, we propose to minimize redundancies at the data level by leveraging data pruning. Extensive experiments demonstrate that the data pruning based AT can achieve similar or superior robust (and clean) accuracy as its unpruned counterparts while being significantly faster. For instance, proposed strategies accelerate CIFAR-10 training up to 3.44X and CIFAR-100 training to 2.02X. Additionally, the data pruning methods can readily be reconciled with existing adversarial acceleration tricks to obtain the striking speed-ups of 5.66X and 5.12X on CIFAR-10, 3.67X and 3.07X on CIFAR-100 with TRADES and MART, respectively.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
Backdoor attack intends to embed hidden backdoor into deep neural networks (DNNs), such that the attacked model performs well on benign samples, whereas its prediction will be maliciously changed if the hidden backdoor is activated by the attacker-defined trigger. Backdoor attack could happen when the training process is not fully controlled by the user, such as training on third-party datasets or adopting third-party models, which poses a new and realistic threat. Although backdoor learning is an emerging and rapidly growing research area, its systematic review, however, remains blank. In this paper, we present the first comprehensive survey of this realm. We summarize and categorize existing backdoor attacks and defenses based on their characteristics, and provide a unified framework for analyzing poisoning-based backdoor attacks. Besides, we also analyze the relation between backdoor attacks and the relevant fields ($i.e.,$ adversarial attack and data poisoning), and summarize the benchmark datasets. Finally, we briefly outline certain future research directions relying upon reviewed works.
Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.
Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. A network based on our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 --- it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by ~10%. Code and models will be made publicly available.