亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the global context, while mixed reality has been an emerging concept for years, recent technological and scientific advancements have now made it poised to revolutionize industries and daily life by offering enhanced functionalities and improved services. Besides reviewing the highly cited papers in the last 20 years among over a thousand research papers on mixed reality, this systematic review provides the state-of-the-art applications and utilities of the mixed reality by primarily scrutinizing the associated papers in 2022 and 2023. Focusing on the potentials that this technology have in providing digitally supported simulations and other utilities in the era of large language models, highlighting the potential and limitations of the innovative solutions and also bringing focus to emerging research directions, such as telemedicine, remote control and optimization of direct volume rendering. The paper's associated repository is publicly accessible at //aizierjiang.github.io/mr.

相關內容

論文(Paper)是專知網站核心資料文檔,包括全球頂級期刊、頂級會議論文,及全球頂尖高校博士碩士學位論文。重點關注中國計算機學會推薦的國際學術會議和期刊,CCF-A、B、C三類。通過人機協作方式,匯編、挖掘后呈現于專知網站。

An important aspect in developing language models that interact with humans is aligning their behavior to be useful and unharmful for their human users. This is usually achieved by tuning the model in a way that enhances desired behaviors and inhibits undesired ones, a process referred to as alignment. In this paper, we propose a theoretical approach called Behavior Expectation Bounds (BEB) which allows us to formally investigate several inherent characteristics and limitations of alignment in large language models. Importantly, we prove that within the limits of this framework, for any behavior that has a finite probability of being exhibited by the model, there exist prompts that can trigger the model into outputting this behavior, with probability that increases with the length of the prompt. This implies that any alignment process that attenuates an undesired behavior but does not remove it altogether, is not safe against adversarial prompting attacks. Furthermore, our framework hints at the mechanism by which leading alignment approaches such as reinforcement learning from human feedback make the LLM prone to being prompted into the undesired behaviors. This theoretical result is being experimentally demonstrated in large scale by the so called contemporary "chatGPT jailbreaks", where adversarial users trick the LLM into breaking its alignment guardrails by triggering it into acting as a malicious persona. Our results expose fundamental limitations in alignment of LLMs and bring to the forefront the need to devise reliable mechanisms for ensuring AI safety.

Entropy measures quantify the amount of information and correlation present in a quantum system. In practice, when the quantum state is unknown and only copies thereof are available, one must resort to the estimation of such entropy measures. Here we propose a variational quantum algorithm for estimating the von Neumann and R\'enyi entropies, as well as the measured relative entropy and measured R\'enyi relative entropy. Our approach first parameterizes a variational formula for the measure of interest by a quantum circuit and a classical neural network, and then optimizes the resulting objective over parameter space. Numerical simulations of our quantum algorithm are provided, using a noiseless quantum simulator. The algorithm provides accurate estimates of the various entropy measures for the examples tested, which renders it as a promising approach for usage in downstream tasks.

Estimating the statistics of the state of a dynamical system, from partial and noisy observations, is both mathematically challenging and finds wide application. Furthermore, the applications are of great societal importance, including problems such as probabilistic weather forecasting and prediction of epidemics. Particle filters provide a well-founded approach to the problem, leading to provably accurate approximations of the statistics. However these methods perform poorly in high dimensions. In 1994 the idea of ensemble Kalman filtering was introduced by Evensen, leading to a methodology that has been widely adopted in the geophysical sciences and also finds application to quite general inverse problems. However, ensemble Kalman filters have defied rigorous analysis of their statistical accuracy, except in the linear Gaussian setting. In this article we describe recent work which takes first steps to analyze the statistical accuracy of ensemble Kalman filters beyond the linear Gaussian setting. The subject is inherently technical, as it involves the evolution of probability measures according to a nonlinear and nonautonomous dynamical system; and the approximation of this evolution. It can nonetheless be presented in a fairly accessible fashion, understandable with basic knowledge of dynamical systems, numerical analysis and probability.

In the Big Data era, with the ubiquity of geolocation sensors in particular, massive datasets exhibiting a possibly complex spatial dependence structure are becoming increasingly available. In this context, the standard probabilistic theory of statistical learning does not apply directly and guarantees of the generalization capacity of predictive rules learned from such data are left to establish. We analyze here the simple Kriging task from a statistical learning perspective, i.e. by carrying out a nonparametric finite-sample predictive analysis. Given $d\geq 1$ values taken by a realization of a square integrable random field $X=\{X_s\}_{s\in S}$, $S\subset \mathbb{R}^2$, with unknown covariance structure, at sites $s_1,\; \ldots,\; s_d$ in $S$, the goal is to predict the unknown values it takes at any other location $s\in S$ with minimum quadratic risk. The prediction rule being derived from a training spatial dataset: a single realization $X'$ of $X$, independent from those to be predicted, observed at $n\geq 1$ locations $\sigma_1,\; \ldots,\; \sigma_n$ in $S$. Despite the connection of this minimization problem with kernel ridge regression, establishing the generalization capacity of empirical risk minimizers is far from straightforward, due to the non independent and identically distributed nature of the training data $X'_{\sigma_1},\; \ldots,\; X'_{\sigma_n}$ involved in the learning procedure. In this article, non-asymptotic bounds of order $O_{\mathbb{P}}(1/\sqrt{n})$ are proved for the excess risk of a plug-in predictive rule mimicking the true minimizer in the case of isotropic stationary Gaussian processes, observed at locations forming a regular grid in the learning stage. These theoretical results are illustrated by various numerical experiments, on simulated data and on real-world datasets.

The Sinkhorn algorithm is the state-of-the-art to approximate solutions of entropic optimal transport (OT) distances between discrete probability distributions. We show that meticulously training a neural network to learn initializations to the algorithm via the entropic OT dual problem can significantly speed up convergence, while maintaining desirable properties of the Sinkhorn algorithm, such as differentiability and parallelizability. We train our predictive network in an adversarial fashion using a second, generating network and a self-supervised bootstrapping loss. The predictive network is universal in the sense that it is able to generalize to any pair of distributions of fixed dimension and cost at inference, and we prove that we can make the generating network universal in the sense that it is capable of producing any pair of distributions during training. Furthermore, we show that our network can even be used as a standalone OT solver to approximate regularized transport distances to a few percent error, which makes it the first meta neural OT solver.

A process algebra is proposed, whose semantics maps a term to a nondeterministic finite automaton (NFA, for short). We prove a representability theorem: for each NFA $N$, there exists a process algebraic term $p$ such that its semantics is an NFA isomorphic to $N$. Moreover, we provide a concise axiomatization of language equivalence: two NFAs $N_1$ and $N_2$ recognize the same language if and only if the associated terms $p_1$ and $p_2$, respectively, can be equated by means of a set of axioms, comprising 7 axioms plus 3 conditional axioms, only.

Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

北京阿比特科技有限公司