It is well-known that digital signatures can be constructed from one-way functions in a black-box way. While one-way functions are essentially the minimal assumption in classical cryptography, this is not the case in the quantum setting. A variety of qualitatively weaker and inherently quantum assumptions (e.g. EFI pairs, one-way state generators, and pseudorandom states) are known to be sufficient for non-trivial quantum cryptography. While it is known that commitments, zero-knowledge proofs, and even multiparty computation can be constructed from these assumptions, it has remained an open question whether the same is true for quantum digital signatures schemes (QDS). In this work, we show that there $\textit{does not}$ exist a black-box construction of a QDS scheme with classical signatures from pseudorandom states with linear, or greater, output length. Our result complements that of Morimae and Yamakawa (2022), who described a $\textit{one-time}$ secure QDS scheme with classical signatures, but left open the question of constructing a standard $\textit{multi-time}$ secure one.
Due to their flexibility to represent almost any kind of relational data, graph-based models have enjoyed a tremendous success over the past decades. While graphs are inherently only combinatorial objects, however, many prominent analysis tools are based on the algebraic representation of graphs via matrices such as the graph Laplacian, or on associated graph embeddings. Such embeddings associate to each node a set of coordinates in a vector space, a representation which can then be employed for learning tasks such as the classification or alignment of the nodes of the graph. As the geometric picture provided by embedding methods enables the use of a multitude of methods developed for vector space data, embeddings have thus gained interest both from a theoretical as well as a practical perspective. Inspired by trace-optimization problems, often encountered in the analysis of graph-based data, here we present a method to derive ellipsoidal embeddings of the nodes of a graph, in which each node is assigned a set of coordinates on the surface of a hyperellipsoid. Our method may be seen as an alternative to popular spectral embedding techniques, to which it shares certain similarities we discuss. To illustrate the utility of the embedding we conduct a case study in which we analyse synthetic and real world networks with modular structure, and compare the results obtained with known methods in the literature.
A multi-agent system comprises numerous agents that autonomously make decisions to collectively accomplish tasks, drawing significant attention for their wide-ranging applications. Within this context, formation control emerges as a prominent task, wherein agents collaboratively shape and maneuver while preserving formation integrity. Our focus centers on cyclic pursuit, a method facilitating the formation of circles, ellipses, and figure-eights under the assumption that agents can only perceive the relative positions of those preceding them. However, this method's scope has been restricted to these specific shapes, leaving the feasibility of forming other shapes uncertain. In response, our study proposes a novel method based on cyclic pursuit capable of forming a broader array of shapes, enabling agents to individually shape while pursuing preceding agents, thereby extending the repertoire of achievable formations. We present two scenarios concerning the information available to agents and devise formation control methods tailored to each scenario. Through extensive simulations, we demonstrate the efficacy of our proposed method in forming multiple shapes, including those represented as Fourier series, thereby underscoring the versatility and effectiveness of our approach.
Physics-compliant models of RIS-parametrized channels assign a load-terminated port to each RIS element. For conventional diagonal RIS (D-RIS), each auxiliary port is terminated by its own independent and individually tunable load (i.e., independent of the other auxiliary ports). For beyond-diagonal RIS (BD-RIS), the auxiliary ports are terminated by a tunable load circuit which couples the auxiliary ports to each other. Here, we point out that a physics-compliant model of the load circuit of a BD-RIS takes the same form as a physics-compliant model of a D-RIS-parametrized radio environment: a multi-port network with a subset of ports terminated by individually tunable loads (independent of each other). Consequently, we recognize that a BD-RIS-parametrized radio environment can be understood as a multi-port cascade network (i.e., the cascade of radio environment with load circuit) terminated by individually tunable loads (independent of each other). Hence, the BD-RIS problem can be mapped into the original D-RIS problem by replacing the radio environment with the cascade of radio environment and load circuit. The insight that BD-RIS can be physics-compliantly analyzed with the conventional D-RIS formalism implies that (i) the same optimization protocols as for D-RIS can be used for the BD-RIS case, and (ii) it is unclear if existing comparisons between BD-RIS and D-RIS are fair because for a fixed number of RIS elements, a BD-RIS has usually more tunable lumped elements.
One of the open problems in machine learning is whether any set-family of VC-dimension $d$ admits a sample compression scheme of size $O(d)$. In this paper, we study this problem for balls in graphs. For a ball $B=B_r(x)$ of a graph $G=(V,E)$, a realizable sample for $B$ is a signed subset $X=(X^+,X^-)$ of $V$ such that $B$ contains $X^+$ and is disjoint from $X^-$. A proper sample compression scheme of size $k$ consists of a compressor and a reconstructor. The compressor maps any realizable sample $X$ to a subsample $X'$ of size at most $k$. The reconstructor maps each such subsample $X'$ to a ball $B'$ of $G$ such that $B'$ includes $X^+$ and is disjoint from $X^-$. For balls of arbitrary radius $r$, we design proper labeled sample compression schemes of size $2$ for trees, of size $3$ for cycles, of size $4$ for interval graphs, of size $6$ for trees of cycles, and of size $22$ for cube-free median graphs. For balls of a given radius, we design proper labeled sample compression schemes of size $2$ for trees and of size $4$ for interval graphs. We also design approximate sample compression schemes of size 2 for balls of $\delta$-hyperbolic graphs.
We compare three graphical methods for displaying evidence in a legal case: Wigmore Charts, Bayesian Networks and Chain Event Graphs. We find that these methods are aimed at three distinct audiences, respectively lawyers, forensic scientists and the police. The methods are illustrated using part of the evidence in the case of the murder of Meredith Kercher. More specifically, we focus on representing the list of propositions, evidence, testimony and facts given in the first trial against Raffaele Sollecito and Amanda Knox with these graphical methodologies.
Regularization of inverse problems is of paramount importance in computational imaging. The ability of neural networks to learn efficient image representations has been recently exploited to design powerful data-driven regularizers. While state-of-the-art plug-and-play methods rely on an implicit regularization provided by neural denoisers, alternative Bayesian approaches consider Maximum A Posteriori (MAP) estimation in the latent space of a generative model, thus with an explicit regularization. However, state-of-the-art deep generative models require a huge amount of training data compared to denoisers. Besides, their complexity hampers the optimization involved in latent MAP derivation. In this work, we first propose to use compressive autoencoders instead. These networks, which can be seen as variational autoencoders with a flexible latent prior, are smaller and easier to train than state-of-the-art generative models. As a second contribution, we introduce the Variational Bayes Latent Estimation (VBLE) algorithm, which performs latent estimation within the framework of variational inference. Thanks to a simple yet efficient parameterization of the variational posterior, VBLE allows for fast and easy (approximate) posterior sampling. Experimental results on image datasets BSD and FFHQ demonstrate that VBLE reaches similar performance than state-of-the-art plug-and-play methods, while being able to quantify uncertainties faster than other existing posterior sampling techniques.
We address the problem of the best uniform approximation of a continuous function on a convex domain. The approximation is by linear combinations of a finite system of functions (not necessarily Chebyshev) under arbitrary linear constraints. By modifying the concept of alternance and of the Remez iterative procedure we present a method, which demonstrates its efficiency in numerical problems. The linear rate of convergence is proved under some favourable assumptions. A special attention is paid to systems of complex exponents, Gaussian functions, lacunar algebraic and trigonometric polynomials. Applications to signal processing, linear ODE, switching dynamical systems, and to Markov-Bernstein type inequalities are considered.
Deep generative models aim to learn the underlying distribution of data and generate new ones. Despite the diversity of generative models and their high-quality generation performance in practice, most of them lack rigorous theoretical convergence proofs. In this work, we aim to establish some convergence results for OT-Flow, one of the deep generative models. First, by reformulating the framework of OT-Flow model, we establish the $\Gamma$-convergence of the formulation of OT-flow to the corresponding optimal transport (OT) problem as the regularization term parameter $\alpha$ goes to infinity. Second, since the loss function will be approximated by Monte Carlo method in training, we established the convergence between the discrete loss function and the continuous one when the sample number $N$ goes to infinity as well. Meanwhile, the approximation capability of the neural network provides an upper bound for the discrete loss function of the minimizers. The proofs in both aspects provide convincing assurances for OT-Flow.
Most link prediction methods return estimates of the connection probability of missing edges in a graph. Such output can be used to rank the missing edges from most to least likely to be a true edge, but does not directly provide a classification into true and non-existent. In this work, we consider the problem of identifying a set of true edges with a control of the false discovery rate (FDR). We propose a novel method based on high-level ideas from the literature on conformal inference. The graph structure induces intricate dependence in the data, which we carefully take into account, as this makes the setup different from the usual setup in conformal inference, where data exchangeability is assumed. The FDR control is empirically demonstrated for both simulated and real data.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.