亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Generative Adversarial Networks (GAN) boast impressive capacity to generate realistic images. However, like much of the field of deep learning, they require an inordinate amount of data to produce results, thereby limiting their usefulness in generating novelty. In the same vein, recent advances in meta-learning have opened the door to many few-shot learning applications. In the present work, we propose Few-shot Image Generation using Reptile (FIGR), a GAN meta-trained with Reptile. Our model successfully generates novel images on both MNIST and Omniglot with as little as 4 images from an unseen class. We further contribute FIGR-8, a new dataset for few-shot image generation, which contains 1,548,944 icons categorized in over 18,409 classes. Trained on FIGR-8, initial results show that our model can generalize to more advanced concepts (such as "bird" and "knife") from as few as 8 samples from a previously unseen class of images and as little as 10 training steps through those 8 images. This work demonstrates the potential of training a GAN for few-shot image generation and aims to set a new benchmark for future work in the domain.

相關內容

Reptile是元學習(xi)(Meta learning)最經典的(de)幾個算(suan)法之一,出自論文《Reptile: a Scalable Metalearning Algorithm》。除了對算(suan)法本(ben)身的(de)貢(gong)獻,論文還給(gei)出了Reptile和(he)MAML算(suan)法的(de)數(shu)學解釋與分析。 原文地址://d4mucfpksywv.cloudfront.net/research-covers/reptile/reptile_update.pdf

As a crucial component in task-oriented dialog systems, the Natural Language Generation (NLG) module converts a dialog act represented in a semantic form into a response in natural language. The success of traditional template-based or statistical models typically relies on heavily annotated data, which is infeasible for new domains. Therefore, it is pivotal for an NLG system to generalize well with limited labelled data in real applications. To this end, we present FewShotWoz, the first NLG benchmark to simulate the few-shot learning setting in task-oriented dialog systems. Further, we develop the SC-GPT model. It is pre-trained on a large set of annotated NLG corpus to acquire the controllable generation ability, and fine-tuned with only a few domain-specific labels to adapt to new domains. Experiments on FewShotWoz and the large Multi-Domain-WOZ datasets show that the proposed SC-GPT significantly outperforms existing methods, measured by various automatic metrics and human evaluations.

Inferring the most likely configuration for a subset of variables of a joint distribution given the remaining ones - which we refer to as co-generation - is an important challenge that is computationally demanding for all but the simplest settings. This task has received a considerable amount of attention, particularly for classical ways of modeling distributions like structured prediction. In contrast, almost nothing is known about this task when considering recently proposed techniques for modeling high-dimensional distributions, particularly generative adversarial nets (GANs). Therefore, in this paper, we study the occurring challenges for co-generation with GANs. To address those challenges we develop an annealed importance sampling based Hamiltonian Monte Carlo co-generation algorithm. The presented approach significantly outperforms classical gradient based methods on a synthetic and on the CelebA and LSUN datasets.

Sufficient supervised information is crucial for any machine learning models to boost performance. However, labeling data is expensive and sometimes difficult to obtain. Active learning is an approach to acquire annotations for data from a human oracle by selecting informative samples with a high probability to enhance performance. In recent emerging studies, a generative adversarial network (GAN) has been integrated with active learning to generate good candidates to be presented to the oracle. In this paper, we propose a novel model that is able to obtain labels for data in a cheaper manner without the need to query an oracle. In the model, a novel reward for each sample is devised to measure the degree of uncertainty, which is obtained from a classifier trained with existing labeled data. This reward is used to guide a conditional GAN to generate informative samples with a higher probability for a certain label. With extensive evaluations, we have confirmed the effectiveness of the model, showing that the generated samples are capable of improving the classification performance in popular image classification tasks.

Few-shot Learning aims to learn classifiers for new classes with only a few training examples per class. Existing meta-learning or metric-learning based few-shot learning approaches are limited in handling diverse domains with various number of labels. The meta-learning approaches train a meta learner to predict weights of homogeneous-structured task-specific networks, requiring a uniform number of classes across tasks. The metric-learning approaches learn one task-invariant metric for all the tasks, and they fail if the tasks diverge. We propose to deal with these limitations with meta metric learning. Our meta metric learning approach consists of task-specific learners, that exploit metric learning to handle flexible labels, and a meta learner, that discovers good parameters and gradient decent to specify the metrics in task-specific learners. Thus the proposed model is able to handle unbalanced classes as well as to generate task-specific metrics. We test our approach in the `$k$-shot $N$-way' few-shot learning setting used in previous work and new realistic few-shot setting with diverse multi-domain tasks and flexible label numbers. Experiments show that our approach attains superior performances in both settings.

We address the problem of segmenting 3D multi-modal medical images in scenarios where very few labeled examples are available for training. Leveraging the recent success of adversarial learning for semi-supervised segmentation, we propose a novel method based on Generative Adversarial Networks (GANs) to train a segmentation model with both labeled and unlabeled images. The proposed method prevents over-fitting by learning to discriminate between true and fake patches obtained by a generator network. Our work extends current adversarial learning approaches, which focus on 2D single-modality images, to the more challenging context of 3D volumes of multiple modalities. The proposed method is evaluated on the problem of segmenting brain MRI from the iSEG-2017 and MRBrainS 2013 datasets. Significant performance improvement is reported, compared to state-of-art segmentation networks trained in a fully-supervised manner. In addition, our work presents a comprehensive analysis of different GAN architectures for semi-supervised segmentation, showing recent techniques like feature matching to yield a higher performance than conventional adversarial training approaches. Our code is publicly available at //github.com/arnab39/FewShot_GAN-Unet3D

Linguistic style is an essential part of written communication, with the power to affect both clarity and attractiveness. With recent advances in vision and language, we can start to tackle the problem of generating image captions that are both visually grounded and appropriately styled. Existing approaches either require styled training captions aligned to images or generate captions with low relevance. We develop a model that learns to generate visually relevant styled captions from a large corpus of styled text without aligned images. The core idea of this model, called SemStyle, is to separate semantics and style. One key component is a novel and concise semantic term representation generated using natural language processing techniques and frame semantics. In addition, we develop a unified language model that decodes sentences with diverse word choices and syntax for different styles. Evaluations, both automatic and manual, show captions from SemStyle preserve image semantics, are descriptive, and are style shifted. More broadly, this work provides possibilities to learn richer image descriptions from the plethora of linguistic data available on the web.

Recently introduced generative adversarial network (GAN) has been shown numerous promising results to generate realistic samples. The essential task of GAN is to control the features of samples generated from a random distribution. While the current GAN structures, such as conditional GAN, successfully generate samples with desired major features, they often fail to produce detailed features that bring specific differences among samples. To overcome this limitation, here we propose a controllable GAN (ControlGAN) structure. By separating a feature classifier from a discriminator, the generator of ControlGAN is designed to learn generating synthetic samples with the specific detailed features. Evaluated with multiple image datasets, ControlGAN shows a power to generate improved samples with well-controlled features. Furthermore, we demonstrate that ControlGAN can generate intermediate features and opposite features for interpolated and extrapolated input labels that are not used in the training process. It implies that ControlGAN can significantly contribute to the variety of generated samples.

In this paper we propose a new conditional GAN for image captioning that enforces semantic alignment between images and captions through a co-attentive discriminator and a context-aware LSTM sequence generator. In order to train these sequence GANs, we empirically study two algorithms: Self-critical Sequence Training (SCST) and Gumbel Straight-Through. Both techniques are confirmed to be viable for training sequence GANs. However, SCST displays better gradient behavior despite not directly leveraging gradients from the discriminator. This ensures a stronger stability of sequence GANs training and ultimately produces models with improved results under human evaluation. Automatic evaluation of GAN trained captioning models is an open question. To remedy this, we introduce a new semantic score with strong correlation to human judgement. As a paradigm for evaluation, we suggest that the generalization ability of the captioner to Out of Context (OOC) scenes is an important criterion to assess generalization and composition. To this end, we propose an OOC dataset which, combined with our automatic metric of semantic score, is a new benchmark for the captioning community to measure the generalization ability of automatic image captioning. Under this new OOC benchmark, and on the traditional MSCOCO dataset, our models trained with SCST have strong performance in both semantic score and human evaluation.

We present FusedGAN, a deep network for conditional image synthesis with controllable sampling of diverse images. Fidelity, diversity and controllable sampling are the main quality measures of a good image generation model. Most existing models are insufficient in all three aspects. The FusedGAN can perform controllable sampling of diverse images with very high fidelity. We argue that controllability can be achieved by disentangling the generation process into various stages. In contrast to stacked GANs, where multiple stages of GANs are trained separately with full supervision of labeled intermediate images, the FusedGAN has a single stage pipeline with a built-in stacking of GANs. Unlike existing methods, which requires full supervision with paired conditions and images, the FusedGAN can effectively leverage more abundant images without corresponding conditions in training, to produce more diverse samples with high fidelity. We achieve this by fusing two generators: one for unconditional image generation, and the other for conditional image generation, where the two partly share a common latent space thereby disentangling the generation. We demonstrate the efficacy of the FusedGAN in fine grained image generation tasks such as text-to-image, and attribute-to-face generation.

Prevalent techniques in zero-shot learning do not generalize well to other related problem scenarios. Here, we present a unified approach for conventional zero-shot, generalized zero-shot and few-shot learning problems. Our approach is based on a novel Class Adapting Principal Directions (CAPD) concept that allows multiple embeddings of image features into a semantic space. Given an image, our method produces one principal direction for each seen class. Then, it learns how to combine these directions to obtain the principal direction for each unseen class such that the CAPD of the test image is aligned with the semantic embedding of the true class, and opposite to the other classes. This allows efficient and class-adaptive information transfer from seen to unseen classes. In addition, we propose an automatic process for selection of the most useful seen classes for each unseen class to achieve robustness in zero-shot learning. Our method can update the unseen CAPD taking the advantages of few unseen images to work in a few-shot learning scenario. Furthermore, our method can generalize the seen CAPDs by estimating seen-unseen diversity that significantly improves the performance of generalized zero-shot learning. Our extensive evaluations demonstrate that the proposed approach consistently achieves superior performance in zero-shot, generalized zero-shot and few/one-shot learning problems.

北京阿比特科技有限公司