亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Artificially sweetened beverages like Diet Coke are often considered healthier alternatives, but the debate over their impact on obesity persists. Previous research has predominantly relied on observational data or randomized controlled trials (RCTs), which may not accurately capture the causal relationship between Diet Coke consumption and obesity. This study uses causal inference methods, employing data from the National Health and Nutrition Examination Survey (NHANES) to examine this relationship across diverse demographics. Instead of relying on RCT data, we constructed a causal graph and applied the back-door criterion with its adjustment formula to estimate the RCT distributions. We then calculated the counterfactual quantity, the Probability of Necessity and Sufficiency (PNS), using both NHANES data and estimated RCT data. We propose that PNS is the essential metric for assessing the impact of Diet Coke on obesity. Our results indicate that between 20% to 50% of individuals, especially those with poor dietary habits, are more likely to gain weight from Diet Coke. Conversely, in groups like young females with healthier diets, only a small proportion experience weight gain due to Diet Coke. These findings highlight the influence of individual lifestyle and potential hormonal factors on the varied effects of Diet Coke, providing a new framework for understanding its nutritional impacts on health.

相關內容

Hate speech poses a significant threat to social harmony. Over the past two years, Indonesia has seen a ten-fold increase in the online hate speech ratio, underscoring the urgent need for effective detection mechanisms. However, progress is hindered by the limited availability of labeled data for Indonesian texts. The condition is even worse for marginalized minorities, such as Shia, LGBTQ, and other ethnic minorities because hate speech is underreported and less understood by detection tools. Furthermore, the lack of accommodation for subjectivity in current datasets compounds this issue. To address this, we introduce IndoToxic2024, a comprehensive Indonesian hate speech and toxicity classification dataset. Comprising 43,692 entries annotated by 19 diverse individuals, the dataset focuses on texts targeting vulnerable groups in Indonesia, specifically during the hottest political event in the country: the presidential election. We establish baselines for seven binary classification tasks, achieving a macro-F1 score of 0.78 with a BERT model (IndoBERTweet) fine-tuned for hate speech classification. Furthermore, we demonstrate how incorporating demographic information can enhance the zero-shot performance of the large language model, gpt-3.5-turbo. However, we also caution that an overemphasis on demographic information can negatively impact the fine-tuned model performance due to data fragmentation.

Unmanned Aerial Vehicles (UAVs) are increasingly used to enable wireless communications. Due to their characteristics, such as the ability to hover and carry cargo, UAVs can serve as communications nodes, including Wi-Fi Access Points and Cellular Base Stations. In previous work, we proposed the Sustainable multi-UAV Performance-aware Placement (SUPPLY) algorithm, which focuses on the energy-efficient placement of multiple UAVs acting as Flying Access Points (FAPs). Additionally, we developed the Multi-UAV Energy Consumption (MUAVE) simulator to evaluate the UAV energy consumption, specifically when using the SUPPLY algorithm. However, MUAVE was initially designed to compute the energy consumption for rotary-wing UAVs only. In this paper, we propose eMUAVE, an enhanced version of the MUAVE simulator that allows the evaluation of the energy consumption for both rotary-wing and fixed-wing UAVs. Our energy consumption evaluation using eMUAVE considers reference and random networking scenarios. The results show that fixed-wing UAVs can be employed in the majority of networking scenarios. However, rotary-wing UAVs are typically more energy-efficient than fixed-wing UAVs when following the trajectories defined by SUPPLY.

Large Language Models (LLMs) have emerged as a new paradigm for embodied reasoning and control, most recently by generating robot policy code that utilizes a custom library of vision and control primitive skills. However, prior arts fix their skills library and steer the LLM with carefully hand-crafted prompt engineering, limiting the agent to a stationary range of addressable tasks. In this work, we introduce LRLL, an LLM-based lifelong learning agent that continuously grows the robot skill library to tackle manipulation tasks of ever-growing complexity. LRLL achieves this with four novel contributions: 1) a soft memory module that allows dynamic storage and retrieval of past experiences to serve as context, 2) a self-guided exploration policy that proposes new tasks in simulation, 3) a skill abstractor that distills recent experiences into new library skills, and 4) a lifelong learning algorithm for enabling human users to bootstrap new skills with minimal online interaction. LRLL continuously transfers knowledge from the memory to the library, building composable, general and interpretable policies, while bypassing gradient-based optimization, thus relieving the learner from catastrophic forgetting. Empirical evaluation in a simulated tabletop environment shows that LRLL outperforms end-to-end and vanilla LLM approaches in the lifelong setup while learning skills that are transferable to the real world. Project material will become available at the webpage //gtziafas.github.io/LRLL_project.

Empathy indicates an individual's ability to understand others. Over the past few years, empathy has drawn attention from various disciplines, including but not limited to Affective Computing, Cognitive Science and Psychology. Detecting empathy has potential applications in society, healthcare and education. Despite being a broad and overlapping topic, the avenue of empathy detection leveraging Machine Learning remains underexplored from a systematic literature review perspective. We collected 828 papers from 10 well-known databases, systematically screened them and analysed the final 61 papers. Our analyses reveal several prominent task formulations $-$ including empathy on localised utterances or overall expressions, unidirectional or parallel empathy, and emotional contagion $-$ in monadic, dyadic and group interactions. Empathy detection methods are summarised based on four input modalities $-$ text, audiovisual, audio and physiological signals $-$ thereby presenting modality-specific network architecture design protocols. We discuss challenges, research gaps and potential applications in the Affective Computing-based empathy domain, which can facilitate new avenues of exploration. We further enlist the public availability of datasets and codes. We believe that our work is a stepping stone to developing a robust empathy detection system that can be deployed in practice to enhance the overall well-being of human life.

Recent advancements in Large Language Models (LLMs) have significantly enhanced their ability to generate and manipulate human language, highlighting their potential across various applications. Evaluating LLMs in languages other than English is crucial for ensuring their linguistic versatility, cultural relevance, and applicability in diverse global contexts, thus broadening their usability and effectiveness. We tackle this challenge by introducing a structured benchmark using the INVALSI tests, a set of well-established assessments designed to measure educational competencies across Italy. Our study makes three primary contributions: Firstly, we adapt the INVALSI benchmark for automated LLM evaluation, which involves rigorous adaptation of the test format to suit automated processing while retaining the essence of the original tests. Secondly, we provide a detailed assessment of current LLMs, offering a crucial reference point for the academic community. Finally, we visually compare the performance of these models against human results. Additionally, researchers are invited to submit their models for ongoing evaluation, ensuring the benchmark remains a current and valuable resource.

Big models have achieved revolutionary breakthroughs in the field of AI, but they might also pose potential concerns. Addressing such concerns, alignment technologies were introduced to make these models conform to human preferences and values. Despite considerable advancements in the past year, various challenges lie in establishing the optimal alignment strategy, such as data cost and scalable oversight, and how to align remains an open question. In this survey paper, we comprehensively investigate value alignment approaches. We first unpack the historical context of alignment tracing back to the 1920s (where it comes from), then delve into the mathematical essence of alignment (what it is), shedding light on the inherent challenges. Following this foundation, we provide a detailed examination of existing alignment methods, which fall into three categories: Reinforcement Learning, Supervised Fine-Tuning, and In-context Learning, and demonstrate their intrinsic connections, strengths, and limitations, helping readers better understand this research area. In addition, two emerging topics, personal alignment, and multimodal alignment, are also discussed as novel frontiers in this field. Looking forward, we discuss potential alignment paradigms and how they could handle remaining challenges, prospecting where future alignment will go.

Multi-modal AI systems will likely become a ubiquitous presence in our everyday lives. A promising approach to making these systems more interactive is to embody them as agents within physical and virtual environments. At present, systems leverage existing foundation models as the basic building blocks for the creation of embodied agents. Embedding agents within such environments facilitates the ability of models to process and interpret visual and contextual data, which is critical for the creation of more sophisticated and context-aware AI systems. For example, a system that can perceive user actions, human behavior, environmental objects, audio expressions, and the collective sentiment of a scene can be used to inform and direct agent responses within the given environment. To accelerate research on agent-based multimodal intelligence, we define "Agent AI" as a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data, and can produce meaningful embodied action with infinite agent. In particular, we explore systems that aim to improve agents based on next-embodied action prediction by incorporating external knowledge, multi-sensory inputs, and human feedback. We argue that by developing agentic AI systems in grounded environments, one can also mitigate the hallucinations of large foundation models and their tendency to generate environmentally incorrect outputs. The emerging field of Agent AI subsumes the broader embodied and agentic aspects of multimodal interactions. Beyond agents acting and interacting in the physical world, we envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.

Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data and the improvement in practical applications. However, many of these models prioritize high utility performance, such as accuracy, with a lack of privacy consideration, which is a major concern in modern society where privacy attacks are rampant. To address this issue, researchers have started to develop privacy-preserving GNNs. Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain. In this survey, we aim to address this gap by summarizing the attacks on graph data according to the targeted information, categorizing the privacy preservation techniques in GNNs, and reviewing the datasets and applications that could be used for analyzing/solving privacy issues in GNNs. We also outline potential directions for future research in order to build better privacy-preserving GNNs.

Australia is a leading AI nation with strong allies and partnerships. Australia has prioritised robotics, AI, and autonomous systems to develop sovereign capability for the military. Australia commits to Article 36 reviews of all new means and methods of warfare to ensure weapons and weapons systems are operated within acceptable systems of control. Additionally, Australia has undergone significant reviews of the risks of AI to human rights and within intelligence organisations and has committed to producing ethics guidelines and frameworks in Security and Defence. Australia is committed to OECD's values-based principles for the responsible stewardship of trustworthy AI as well as adopting a set of National AI ethics principles. While Australia has not adopted an AI governance framework specifically for Defence; Defence Science has published 'A Method for Ethical AI in Defence' (MEAID) technical report which includes a framework and pragmatic tools for managing ethical and legal risks for military applications of AI.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

北京阿比特科技有限公司