The systematic evaluation and understanding of computer vision models under varying conditions require large amounts of data with comprehensive and customized labels, which real-world vision datasets rarely satisfy. While current synthetic data generators offer a promising alternative, particularly for embodied AI tasks, they often fall short for computer vision tasks due to low asset and rendering quality, limited diversity, and unrealistic physical properties. We introduce the BEHAVIOR Vision Suite (BVS), a set of tools and assets to generate fully customized synthetic data for systematic evaluation of computer vision models, based on the newly developed embodied AI benchmark, BEHAVIOR-1K. BVS supports a large number of adjustable parameters at the scene level (e.g., lighting, object placement), the object level (e.g., joint configuration, attributes such as "filled" and "folded"), and the camera level (e.g., field of view, focal length). Researchers can arbitrarily vary these parameters during data generation to perform controlled experiments. We showcase three example application scenarios: systematically evaluating the robustness of models across different continuous axes of domain shift, evaluating scene understanding models on the same set of images, and training and evaluating simulation-to-real transfer for a novel vision task: unary and binary state prediction. Project website: //behavior-vision-suite.github.io/
Large language models (LLMs) exhibit a variety of promising capabilities in robotics, including long-horizon planning and commonsense reasoning. However, their performance in place recognition is still underexplored. In this work, we introduce multimodal LLMs (MLLMs) to visual place recognition (VPR), where a robot must localize itself using visual observations. Our key design is to use vision-based retrieval to propose several candidates and then leverage language-based reasoning to carefully inspect each candidate for a final decision. Specifically, we leverage the robust visual features produced by off-the-shelf vision foundation models (VFMs) to obtain several candidate locations. We then prompt an MLLM to describe the differences between the current observation and each candidate in a pairwise manner, and reason about the best candidate based on these descriptions. Our results on three datasets demonstrate that integrating the general-purpose visual features from VFMs with the reasoning capabilities of MLLMs already provides an effective place recognition solution, without any VPR-specific supervised training. We believe our work can inspire new possibilities for applying and designing foundation models, i.e., VFMs, LLMs, and MLLMs, to enhance the localization and navigation of mobile robots.
Human motion copy is an intriguing yet challenging task in artificial intelligence and computer vision, which strives to generate a fake video of a target person performing the motion of a source person. The problem is inherently challenging due to the subtle human-body texture details to be generated and the temporal consistency to be considered. Existing approaches typically adopt a conventional GAN with an L1 or L2 loss to produce the target fake video, which intrinsically necessitates a large number of training samples that are challenging to acquire. Meanwhile, current methods still have difficulties in attaining realistic image details and temporal consistency, which unfortunately can be easily perceived by human observers. Motivated by this, we try to tackle the issues from three aspects: (1) We constrain pose-to-appearance generation with a perceptual loss and a theoretically motivated Gromov-Wasserstein loss to bridge the gap between pose and appearance. (2) We present an episodic memory module in the pose-to-appearance generation to propel continuous learning that helps the model learn from its past poor generations. We also utilize geometrical cues of the face to optimize facial details and refine each key body part with a dedicated local GAN. (3) We advocate generating the foreground in a sequence-to-sequence manner rather than a single-frame manner, explicitly enforcing temporal inconsistency. Empirical results on five datasets, iPER, ComplexMotion, SoloDance, Fish, and Mouse datasets, demonstrate that our method is capable of generating realistic target videos while precisely copying motion from a source video. Our method significantly outperforms state-of-the-art approaches and gains 7.2% and 12.4% improvements in PSNR and FID respectively.
Car-following (CF) modeling, a fundamental component in microscopic traffic simulation, has attracted increasing interest of researchers in the past decades. In this study, we propose an adaptable personalized car-following framework -MetaFollower, by leveraging the power of meta-learning. Specifically, we first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events. Afterward, the pre-trained model can be fine-tuned on new drivers with only a few CF trajectories to achieve personalized CF adaptation. We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability. Unlike conventional adaptive cruise control (ACC) systems that rely on predefined settings and constant parameters without considering heterogeneous driving characteristics, MetaFollower can accurately capture and simulate the intricate dynamics of car-following behavior while considering the unique driving styles of individual drivers. We demonstrate the versatility and adaptability of MetaFollower by showcasing its ability to adapt to new drivers with limited training data quickly. To evaluate the performance of MetaFollower, we conduct rigorous experiments comparing it with both data-driven and physics-based models. The results reveal that our proposed framework outperforms baseline models in predicting car-following behavior with higher accuracy and safety. To the best of our knowledge, this is the first car-following model aiming to achieve fast adaptation by considering both driver and temporal heterogeneity based on meta-learning.
Deep learning models are increasingly data-hungry, requiring significant resources to collect and compile the datasets needed to train them, with Earth Observation (EO) models being no exception. However, the landscape of datasets in EO is relatively atomised, with interoperability made difficult by diverse formats and data structures. If ever larger datasets are to be built, and duplication of effort minimised, then a shared framework that allows users to combine and access multiple datasets is needed. Here, Major TOM (Terrestrial Observation Metaset) is proposed as this extensible framework. Primarily, it consists of a geographical indexing system based on a set of grid points and a metadata structure that allows multiple datasets with different sources to be merged. Besides the specification of Major TOM as a framework, this work also presents a large, open-access dataset, MajorTOM-Core, which covers the vast majority of the Earth's land surface. This dataset provides the community with both an immediately useful resource, as well as acting as a template for future additions to the Major TOM ecosystem. Access: //huggingface.co/Major-TOM
Semantic segmentation is an important computer vision task, particularly for scene understanding and navigation of autonomous vehicles and UAVs. Several variations of deep neural network architectures have been designed to tackle this task. However, due to their huge computational costs and their high memory consumption, these models are not meant to be deployed on resource-constrained systems. To address this limitation, we introduce an end-to-end biologically inspired semantic segmentation approach by combining Spiking Neural Networks (SNNs, a low-power alternative to classical neural networks) with event cameras whose output data can directly feed these neural network inputs. We have designed EvSegSNN, a biologically plausible encoder-decoder U-shaped architecture relying on Parametric Leaky Integrate and Fire neurons in an objective to trade-off resource usage against performance. The experiments conducted on DDD17 demonstrate that EvSegSNN outperforms the closest state-of-the-art model in terms of MIoU while reducing the number of parameters by a factor of $1.6$ and sparing a batch normalization stage.
Multiparty computation approaches to secure neural network inference commonly rely on garbled circuits for securely executing nonlinear activation functions. However, garbled circuits require excessive communication between server and client, impose significant storage overheads, and incur large runtime penalties. To reduce these costs, we propose an alternative to garbled circuits: Tabula, an algorithm based on secure lookup tables. Our approach precomputes lookup tables during an offline phase that contains the result of all possible nonlinear function calls. Because these tables incur exponential storage costs in the number of operands and the precision of the input values, we use quantization to reduce these storage costs to make this approach practical. This enables an online phase where securely computing the result of a nonlinear function requires just a single round of communication, with communication cost equal to twice the number of bits of the input to the nonlinear function. In practice our approach costs 2 bytes of communication per nonlinear function call in the online phase. Compared to garbled circuits with 8-bit quantized inputs, when computing individual nonlinear functions during the online phase, experiments show Tabula with 8-bit activations uses between $280$-$560 \times$ less communication, is over $100\times$ faster, and uses a comparable (within a factor of 2) amount of storage; compared against other state-of-the-art protocols Tabula achieves greater than $40\times$ communication reduction. This leads to significant performance gains over garbled circuits with quantized inputs during the online phase of secure inference of neural networks: Tabula reduces end-to-end inference communication by up to $9 \times$ and achieves an end-to-end inference speedup of up to $50 \times$, while imposing comparable storage and offline preprocessing costs.
The rapid evolution of wireless technologies and the growing complexity of network infrastructures necessitate a paradigm shift in how communication networks are designed, configured, and managed. Recent advancements in Large Language Models (LLMs) have sparked interest in their potential to revolutionize wireless communication systems. However, existing studies on LLMs for wireless systems are limited to a direct application for telecom language understanding. To empower LLMs with knowledge and expertise in the wireless domain, this paper proposes WirelessLLM, a comprehensive framework for adapting and enhancing LLMs to address the unique challenges and requirements of wireless communication networks. We first identify three foundational principles that underpin WirelessLLM: knowledge alignment, knowledge fusion, and knowledge evolution. Then, we investigate the enabling technologies to build WirelessLLM, including prompt engineering, retrieval augmented generation, tool usage, multi-modal pre-training, and domain-specific fine-tuning. Moreover, we present three case studies to demonstrate the practical applicability and benefits of WirelessLLM for solving typical problems in wireless networks. Finally, we conclude this paper by highlighting key challenges and outlining potential avenues for future research.
The past decade has witnessed a plethora of works that leverage the power of visualization (VIS) to interpret machine learning (ML) models. The corresponding research topic, VIS4ML, keeps growing at a fast pace. To better organize the enormous works and shed light on the developing trend of VIS4ML, we provide a systematic review of these works through this survey. Since data quality greatly impacts the performance of ML models, our survey focuses specifically on summarizing VIS4ML works from the data perspective. First, we categorize the common data handled by ML models into five types, explain the unique features of each type, and highlight the corresponding ML models that are good at learning from them. Second, from the large number of VIS4ML works, we tease out six tasks that operate on these types of data (i.e., data-centric tasks) at different stages of the ML pipeline to understand, diagnose, and refine ML models. Lastly, by studying the distribution of 143 surveyed papers across the five data types, six data-centric tasks, and their intersections, we analyze the prospective research directions and envision future research trends.
The difficulty of deploying various deep learning (DL) models on diverse DL hardwares has boosted the research and development of DL compilers in the community. Several DL compilers have been proposed from both industry and academia such as Tensorflow XLA and TVM. Similarly, the DL compilers take the DL models described in different DL frameworks as input, and then generate optimized codes for diverse DL hardwares as output. However, none of the existing survey has analyzed the unique design of the DL compilers comprehensively. In this paper, we perform a comprehensive survey of existing DL compilers by dissecting the commonly adopted design in details, with emphasis on the DL oriented multi-level IRs, and frontend/backend optimizations. Specifically, we provide a comprehensive comparison among existing DL compilers from various aspects. In addition, we present detailed analysis of the multi-level IR design and compiler optimization techniques. Finally, several insights are highlighted as the potential research directions of DL compiler. This is the first survey paper focusing on the unique design of DL compiler, which we hope can pave the road for future research towards the DL compiler.
The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.