亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Mixed-dimensional elliptic equations exhibiting a hierarchical structure are commonly used to model problems with high aspect ratio inclusions, such as flow in fractured porous media. We derive general abstract estimates based on the theory of functional a posteriori error estimates, for which guaranteed upper bounds for the primal and dual variables and two-sided bounds for the primal-dual pair are obtained. We improve on the abstract results obtained with the functional approach by proposing four different ways of estimating the residual errors based on the extent the approximate solution has conservation properties, i.e.: (1) no conservation, (2) subdomain conservation, (3) grid-level conservation, and (4) exact conservation. This treatment results in sharper and fully computable estimates when mass is conserved either at the grid level or exactly, with a comparable structure to those obtained from grid-based a posteriori techniques. We demonstrate the practical effectiveness of our theoretical results through numerical experiments using four different discretization methods for synthetic problems and applications based on benchmarks of flow in fractured porous media.

相關內容

The FedProx algorithm is a simple yet powerful distributed proximal point optimization method widely used for federated learning (FL) over heterogeneous data. Despite its popularity and remarkable success witnessed in practice, the theoretical understanding of FedProx is largely underinvestigated: the appealing convergence behavior of FedProx is so far characterized under certain non-standard and unrealistic dissimilarity assumptions of local functions, and the results are limited to smooth optimization problems. In order to remedy these deficiencies, we develop a novel local dissimilarity invariant convergence theory for FedProx and its minibatch stochastic extension through the lens of algorithmic stability. As a result, we contribute to derive several new and deeper insights into FedProx for non-convex federated optimization including: 1) convergence guarantees independent on local dissimilarity type conditions; 2) convergence guarantees for non-smooth FL problems; and 3) linear speedup with respect to size of minibatch and number of sampled devices. Our theory for the first time reveals that local dissimilarity and smoothness are not must-have for FedProx to get favorable complexity bounds. Preliminary experimental results on a series of benchmark FL datasets are reported to demonstrate the benefit of minibatching for improving the sample efficiency of FedProx.

We study a regression problem on a compact manifold M. In order to take advantage of the underlying geometry and topology of the data, the regression task is performed on the basis of the first several eigenfunctions of the Laplace-Beltrami operator of the manifold, that are regularized with topological penalties. The proposed penalties are based on the topology of the sub-level sets of either the eigenfunctions or the estimated function. The overall approach is shown to yield promising and competitive performance on various applications to both synthetic and real data sets. We also provide theoretical guarantees on the regression function estimates, on both its prediction error and its smoothness (in a topological sense). Taken together, these results support the relevance of our approach in the case where the targeted function is ''topologically smooth''.

We present a robust framework to perform linear regression with missing entries in the features. By considering an elliptical data distribution, and specifically a multivariate normal model, we are able to conditionally formulate a distribution for the missing entries and present a robust framework, which minimizes the worst case error caused by the uncertainty about the missing data. We show that the proposed formulation, which naturally takes into account the dependency between different variables, ultimately reduces to a convex program, for which a customized and scalable solver can be delivered. In addition to a detailed analysis to deliver such solver, we also asymptoticly analyze the behavior of the proposed framework, and present technical discussions to estimate the required input parameters. We complement our analysis with experiments performed on synthetic, semi-synthetic, and real data, and show how the proposed formulation improves the prediction accuracy and robustness, and outperforms the competing techniques.

To avoid the curse of dimensionality, a common approach to clustering high-dimensional data is to first project the data into a space of reduced dimension, and then cluster the projected data. Although effective, this two-stage approach prevents joint optimization of the dimensionality-reduction and clustering models, and obscures how well the complete model describes the data. Here, we show how a family of such two-stage models can be combined into a single, hierarchical model that we call a hierarchical mixture of Gaussians (HMoG). An HMoG simultaneously captures both dimensionality-reduction and clustering, and its performance is quantified in closed-form by the likelihood function. By formulating and extending existing models with exponential family theory, we show how to maximize the likelihood of HMoGs with expectation-maximization. We apply HMoGs to synthetic data and RNA sequencing data, and demonstrate how they exceed the limitations of two-stage models. Ultimately, HMoGs are a rigorous generalization of a common statistical framework, and provide researchers with a method to improve model performance when clustering high-dimensional data.

High-dimensional Partial Differential Equations (PDEs) are a popular mathematical modelling tool, with applications ranging from finance to computational chemistry. However, standard numerical techniques for solving these PDEs are typically affected by the curse of dimensionality. In this work, we tackle this challenge while focusing on stationary diffusion equations defined over a high-dimensional domain with periodic boundary conditions. Inspired by recent progress in sparse function approximation in high dimensions, we propose a new method called compressive Fourier collocation. Combining ideas from compressive sensing and spectral collocation, our method replaces the use of structured collocation grids with Monte Carlo sampling and employs sparse recovery techniques, such as orthogonal matching pursuit and $\ell^1$ minimization, to approximate the Fourier coefficients of the PDE solution. We conduct a rigorous theoretical analysis showing that the approximation error of the proposed method is comparable with the best $s$-term approximation (with respect to the Fourier basis) to the solution. Using the recently introduced framework of random sampling in bounded Riesz systems, our analysis shows that the compressive Fourier collocation method mitigates the curse of dimensionality with respect to the number of collocation points under sufficient conditions on the regularity of the diffusion coefficient. We also present numerical experiments that illustrate the accuracy and stability of the method for the approximation of sparse and compressible solutions.

In this paper, we are concerned with the numerical solution for the two-dimensional time fractional Fokker-Planck equation with tempered fractional derivative of order $\alpha$. Although some of its variants are considered in many recent numerical analysis papers, there are still some significant differences. Here we first provide the regularity estimates of the solution. And then a modified $L$1 scheme inspired by the middle rectangle quadrature formula on graded meshes is employed to compensate for the singularity of the solution at $t\rightarrow 0^{+}$, while the five-point difference scheme is used in space. Stability and convergence are proved in the sence of $L^{\infty}$ norm, then a sharp error estimate $\mathscr{O}(\tau^{\min\{2-\alpha, r\alpha\}})$ is derived on graded meshes. Furthermore, unlike the bounds proved in the previous works, the constant multipliers in our analysis do not blow up as the Caputo fractional derivative $\alpha$ approaches the classical value of 1. Finally, we perform the numerical experiments to verify the effectiveness and convergence order of the presented algorithms.

Network compression is crucial to making the deep networks to be more efficient, faster, and generalizable to low-end hardware. Current network compression methods have two open problems: first, there lacks a theoretical framework to estimate the maximum compression rate; second, some layers may get over-prunned, resulting in significant network performance drop. To solve these two problems, this study propose a gradient-matrix singularity analysis-based method to estimate the maximum network redundancy. Guided by that maximum rate, a novel and efficient hierarchical network pruning algorithm is developed to maximally condense the neuronal network structure without sacrificing network performance. Substantial experiments are performed to demonstrate the efficacy of the new method for pruning several advanced convolutional neural network (CNN) architectures. Compared to existing pruning methods, the proposed pruning algorithm achieved state-of-the-art performance. At the same or similar compression ratio, the new method provided the highest network prediction accuracy as compared to other methods.

Discretization of flow in fractured porous media commonly lead to large systems of linear equations that require dedicated solvers. In this work, we develop an efficient linear solver and its practical implementation for mixed-dimensional scalar elliptic problems. We design an effective preconditioner based on approximate block factorization and algebraic multigrid techniques. Numerical results on benchmarks with complex fracture structures demonstrate the effectiveness of the proposed linear solver and its robustness with respect to different physical and discretization parameters.

Mini-batch optimal transport (m-OT) has been successfully used in practical applications that involve probability measures with a very high number of supports. The m-OT solves several smaller optimal transport problems and then returns the average of their costs and transportation plans. Despite its scalability advantage, the m-OT does not consider the relationship between mini-batches which leads to undesirable estimation. Moreover, the m-OT does not approximate a proper metric between probability measures since the identity property is not satisfied. To address these problems, we propose a novel mini-batch scheme for optimal transport, named Batch of Mini-batches Optimal Transport (BoMb-OT), that finds the optimal coupling between mini-batches and it can be seen as an approximation to a well-defined distance on the space of probability measures. Furthermore, we show that the m-OT is a limit of the entropic regularized version of the BoMb-OT when the regularized parameter goes to infinity. Finally, we carry out experiments on various applications including deep generative models, deep domain adaptation, approximate Bayesian computation, color transfer, and gradient flow to show that the BoMb-OT can be widely applied and performs well in various applications.

Graph convolutional networks (GCNs) have been successfully applied in node classification tasks of network mining. However, most of these models based on neighborhood aggregation are usually shallow and lack the "graph pooling" mechanism, which prevents the model from obtaining adequate global information. In order to increase the receptive field, we propose a novel deep Hierarchical Graph Convolutional Network (H-GCN) for semi-supervised node classification. H-GCN first repeatedly aggregates structurally similar nodes to hyper-nodes and then refines the coarsened graph to the original to restore the representation for each node. Instead of merely aggregating one- or two-hop neighborhood information, the proposed coarsening procedure enlarges the receptive field for each node, hence more global information can be learned. Comprehensive experiments conducted on public datasets demonstrate the effectiveness of the proposed method over the state-of-art methods. Notably, our model gains substantial improvements when only a few labeled samples are provided.

北京阿比特科技有限公司