亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper targets high-fidelity and real-time view synthesis of dynamic 3D scenes at 4K resolution. Recently, some methods on dynamic view synthesis have shown impressive rendering quality. However, their speed is still limited when rendering high-resolution images. To overcome this problem, we propose 4K4D, a 4D point cloud representation that supports hardware rasterization and enables unprecedented rendering speed. Our representation is built on a 4D feature grid so that the points are naturally regularized and can be robustly optimized. In addition, we design a novel hybrid appearance model that significantly boosts the rendering quality while preserving efficiency. Moreover, we develop a differentiable depth peeling algorithm to effectively learn the proposed model from RGB videos. Experiments show that our representation can be rendered at over 400 FPS on the DNA-Rendering dataset at 1080p resolution and 80 FPS on the ENeRF-Outdoor dataset at 4K resolution using an RTX 4090 GPU, which is 30x faster than previous methods and achieves the state-of-the-art rendering quality. Our project page is available at //zju3dv.github.io/4k4d/.

相關內容

We present a new approach, termed GPS-Gaussian, for synthesizing novel views of a character in a real-time manner. The proposed method enables 2K-resolution rendering under a sparse-view camera setting. Unlike the original Gaussian Splatting or neural implicit rendering methods that necessitate per-subject optimizations, we introduce Gaussian parameter maps defined on the source views and regress directly Gaussian Splatting properties for instant novel view synthesis without any fine-tuning or optimization. To this end, we train our Gaussian parameter regression module on a large amount of human scan data, jointly with a depth estimation module to lift 2D parameter maps to 3D space. The proposed framework is fully differentiable and experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed.

This paper focuses on the multivariate time series imputation problem using deep neural architectures. The ubiquitous issue of missing data in both scientific and engineering tasks necessitates the development of an effective and general imputation model. Leveraging the wisdom and expertise garnered from low-rank imputation methods, we power the canonical Transformers with three key knowledge-driven enhancements, including projected temporal attention, global adaptive graph convolution, and Fourier imputation loss. These task-agnostic inductive biases exploit the inherent structures of incomplete time series, and thus make our model versatile for a variety of imputation problems. We demonstrate its superiority in terms of accuracy, efficiency, and flexibility on heterogeneous datasets, including traffic speed, traffic volume, solar energy, smart metering, and air quality. Comprehensive case studies are performed to further strengthen the interpretability. Promising empirical results provide strong conviction that incorporating time series primitives, such as low-rank properties, can substantially facilitate the development of a generalizable model to approach a wide range of spatiotemporal imputation problems.

Nowadays, denoising diffusion probabilistic models have been adapted for many image segmentation tasks. However, existing end-to-end models have already demonstrated remarkable capabilities. Rather than using denoising diffusion probabilistic models alone, integrating the abilities of both denoising diffusion probabilistic models and existing end-to-end models can better improve the performance of image segmentation. Based on this, we implicitly introduce residual term into the diffusion process and propose ResEnsemble-DDPM, which seamlessly integrates the diffusion model and the end-to-end model through ensemble learning. The output distributions of these two models are strictly symmetric with respect to the ground truth distribution, allowing us to integrate the two models by reducing the residual term. Experimental results demonstrate that our ResEnsemble-DDPM can further improve the capabilities of existing models. Furthermore, its ensemble learning strategy can be generalized to other downstream tasks in image generation and get strong competitiveness.

Self-supervised learning relies heavily on data augmentation to extract meaningful representations from unlabeled images. While existing state-of-the-art augmentation pipelines incorporate a wide range of primitive transformations, these often disregard natural image structure. Thus, augmented samples can exhibit degraded semantic information and low stylistic diversity, affecting downstream performance of self-supervised representations. To overcome this, we propose SASSL: Style Augmentations for Self Supervised Learning, a novel augmentation technique based on Neural Style Transfer. The method decouples semantic and stylistic attributes in images and applies transformations exclusively to the style while preserving content, generating diverse augmented samples that better retain their semantic properties. Experimental results show our technique achieves a top-1 classification performance improvement of more than 2% on ImageNet compared to the well-established MoCo v2. We also measure transfer learning performance across five diverse datasets, observing significant improvements of up to 3.75%. Our experiments indicate that decoupling style from content information and transferring style across datasets to diversify augmentations can significantly improve downstream performance of self-supervised representations.

Music recommendation for videos attracts growing interest in multi-modal research. However, existing systems focus primarily on content compatibility, often ignoring the users' preferences. Their inability to interact with users for further refinements or to provide explanations leads to a less satisfying experience. We address these issues with MuseChat, a first-of-its-kind dialogue-based recommendation system that personalizes music suggestions for videos. Our system consists of two key functionalities with associated modules: recommendation and reasoning. The recommendation module takes a video along with optional information including previous suggested music and user's preference as inputs and retrieves an appropriate music matching the context. The reasoning module, equipped with the power of Large Language Model (Vicuna-7B) and extended to multi-modal inputs, is able to provide reasonable explanation for the recommended music. To evaluate the effectiveness of MuseChat, we build a large-scale dataset, conversational music recommendation for videos, that simulates a two-turn interaction between a user and a recommender based on accurate music track information. Experiment results show that MuseChat achieves significant improvements over existing video-based music retrieval methods as well as offers strong interpretability and interactability.

In this paper, we observe and address the challenges of the coordination recognition task. Most existing methods rely on syntactic parsers to identify the coordinators in a sentence and detect the coordination boundaries. However, state-of-the-art syntactic parsers are slow and suffer from errors, especially for long and complicated sentences. To better solve the problems, we propose a pipeline model COordination RECognizer (CoRec). It consists of two components: coordinator identifier and conjunct boundary detector. The experimental results on datasets from various domains demonstrate the effectiveness and efficiency of the proposed method. Further experiments show that CoRec positively impacts downstream tasks, improving the yield of state-of-the-art Open IE models.

Distribution shifts between training and deployment data often affect the performance of machine learning models. In this paper, we explore a setting where a hidden variable induces a shift in the distribution of classes. These distribution shifts are particularly challenging for zero-shot classifiers, as they rely on representations learned from training classes, but are deployed on new, unseen ones. We introduce an algorithm to learn data representations that are robust to such class distribution shifts in zero-shot verification tasks. We show that our approach, which combines hierarchical data sampling with out-of-distribution generalization techniques, improves generalization to diverse class distributions in both simulations and real-world datasets.

Surface reconstruction with preservation of geometric features is a challenging computer vision task. Despite significant progress in implicit shape reconstruction, state-of-the-art mesh extraction methods often produce aliased, perceptually distorted surfaces and lack scalability to high-resolution 3D shapes. We present a data-driven approach for automatic feature detection and remeshing that requires only a coarse, aliased mesh as input and scales to arbitrary resolution reconstructions. We define and learn a collection of surface-based fields to (1) capture sharp geometric features in the shape with an implicit vertexwise model and (2) approximate improvements in normals alignment obtained by applying edge-flips with an edgewise model. To support scaling to arbitrary complexity shapes, we learn our fields using local triangulated patches, fusing estimates on complete surface meshes. Our feature remeshing algorithm integrates the learned fields as sharp feature priors and optimizes vertex placement and mesh connectivity for maximum expected surface improvement. On a challenging collection of high-resolution shape reconstructions in the ABC dataset, our algorithm improves over state-of-the-art by 26% normals F-score and 42% perceptual $\text{RMSE}_{\text{v}}$.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

This paper describes a general framework for learning Higher-Order Network Embeddings (HONE) from graph data based on network motifs. The HONE framework is highly expressive and flexible with many interchangeable components. The experimental results demonstrate the effectiveness of learning higher-order network representations. In all cases, HONE outperforms recent embedding methods that are unable to capture higher-order structures with a mean relative gain in AUC of $19\%$ (and up to $75\%$ gain) across a wide variety of networks and embedding methods.

北京阿比特科技有限公司